Plot outcome predictions from superpc
Plots outcome predictions from superpc
superpc.predictionplot(train.obj, data, data.test, threshold, n.components=3, n.class=2, shrinkage=NULL, call.win.metafile=FALSE)
train.obj
: Object returned by superpc.traindata
: List of training data, of form described in superpc.train documentationdata.test
: List of test data; same form as training datathreshold
: Threshold for scores: features with abs(score) > threshold are retained.n.components
: Number of principal components to compute. Should be 1,2 or 3.n.class
: Number of classes for survival stratification. Only applicable for survival data. Default 2.shrinkage
: Shrinkage to be applied to feature loadings. Default is NULL, meaning no shrinkagecall.win.metafile
: Used only by Excel interface call to functionMaintainer: "Jean-Eudes Dazard, Ph.D."
set.seed(332) #generate some data x <- matrix(rnorm(50*30), ncol=30) y <- 10 + svd(x[1:50,])$v[,1] + .1*rnorm(30) ytest <- 10 + svd(x[1:50,])$v[,1] + .1*rnorm(30) censoring.status <- sample(c(rep(1,20), rep(0,10))) censoring.status.test <- sample(c(rep(1,20), rep(0,10))) featurenames <- paste("feature", as.character(1:50), sep="") data <- list(x=x, y=y, censoring.status=censoring.status, featurenames=featurenames) data.test <- list(x=x, y=ytest, censoring.status=censoring.status.test, featurenames=featurenames) a <- superpc.train(data, type="survival") superpc.predictionplot(a, data, data.test, threshold=1)