superpc.rainbowplot function

Make rainbow plot of superpc and compeiting predictors

Make rainbow plot of superpc and compeiting predictors

Makes a heatmap display of outcome predictions from superpc, along with expected survival time, and values of competing predictors.

superpc.rainbowplot(data, pred, sample.labels, competing.predictors, call.win.metafile=FALSE)

Arguments

  • data: List of (test) data, of form described in superpc.train documentation
  • pred: Superpc score from superpc.predict or superpc.predict.red
  • sample.labels: Vector of sample labels of test data
  • competing.predictors: List of competing predictors to be plotted
  • call.win.metafile: Used only by Excel interface call to function

Details

Any censored survival times are estimated by E(T|T > C), where CC is the observed censoring time and the Kaplan-Meier estimate from the training set is used to estimate the expectation.

References

  • E. Bair and R. Tibshirani (2004). "Semi-supervised methods to predict patient survival from gene expression data." PLoS Biol, 2(4):e108.
  • E. Bair, T. Hastie, D. Paul, and R. Tibshirani (2006). "Prediction by supervised principal components." J. Am. Stat. Assoc., 101(473):119-137.

Author(s)

  • "Eric Bair, Ph.D."
  • "Jean-Eudes Dazard, Ph.D."
  • "Rob Tibshirani, Ph.D."

Maintainer: "Jean-Eudes Dazard, Ph.D."

Examples

set.seed(332) #generate some data x <- matrix(rnorm(50*30), ncol=30) y <- 10 + svd(x[1:50,])$v[,1] + .1*rnorm(30) ytest <- 10 + svd(x[1:50,])$v[,1] + .1*rnorm(30) censoring.status <- sample(c(rep(1,20), rep(0,10))) censoring.status.test <- sample(c(rep(1,20), rep(0,10))) featurenames <- paste("feature", as.character(1:50), sep="") competing.predictors.test <- list(pred1=rnorm(30), pred2=as.factor(sample(c(1,2), replace=TRUE, size=30))) data <- list(x=x, y=y, censoring.status=censoring.status, featurenames=featurenames) data.test <- list(x=x, y=ytest, censoring.status=censoring.status.test, featurenames=featurenames) sample.labels <- paste("te", as.character(1:20), sep="") a <- superpc.train(data, type="survival") pred <- superpc.predict(a, data, data.test, threshold=.25, n.components=1)$v.pred superpc.rainbowplot(data, pred, sample.labels, competing.predictors=competing.predictors.test)
  • Maintainer: Jean-Eudes Dazard
  • License: GPL (>= 3) | file LICENSE
  • Last published: 2020-10-19