Tools for Flexible Survival Analysis Using Machine Learning
Generate cross-fitted oracle prediction function estimates
Generate cross-fitted conditional survival predictions
Estimate a survival function under current status sampling
Generate oracle prediction function estimates using doubly-robust pseu...
Generate cross-fitting and sample-splitting folds
Obtain predicted conditional survival and cumulative hazard functions ...
Obtain predicted conditional survival function from a local survival s...
Estimate a conditional survival function using global survival stackin...
Estimate a conditional survival function via local survival stacking
survML: Tools for Flexible Survival Analysis Using Machine Learning
Estimate classification accuracy VIM
Estimate AUC VIM
Estimate Brier score VIM
Estimate concordance index VIM
Estimate R-squared (proportion of explained variance) VIM based on eve...
Estimate restricted predicted survival time MSE VIM
Estimate AUC VIM
Statistical tools for analyzing time-to-event data using machine learning. Implements survival stacking for conditional survival estimation, standardized survival function estimation for current status data, and methods for algorithm-agnostic variable importance. See Wolock CJ, Gilbert PB, Simon N, and Carone M (2024) <doi:10.1080/10618600.2024.2304070>.
Useful links