regFit function

survivalsvm (regression approach)

survivalsvm (regression approach)

The function regFit fits a survivalsvm model based on the regression approach.

regFit( X, Y, delta, meth_par = 1, kernel_type = "lin_kernel", kernel_pars = NA, bin_cat = integer(0), opt_alg = "quadprog", sgf_sv = 5, sigf = 7, maxiter = 20, margin = 0.05, bound = 10, eig.tol = 1e-06, conv.tol = 1e-07, posd.tol = 1e-08 )

Arguments

  • X: [matrix(1)]

    design matrix.

  • Y: [vector(1)]

    vector of survival times.

  • delta: [vector(1)]

    vector of status: 0 if censored and 1 else.

  • meth_par: [numeric(1)]

    parameter of regularization.

  • kernel_type: [character(1)]

    type of the kernel.

  • kernel_pars: [vector(1)]

    parameter of kernel.

  • bin_cat: [vector(1)]

    indexes of binary/categorial variables.

  • opt_alg: [character(1)]

    program used to solve the optimization problem. This most be one of the two possibilities quadprog or ipop.

  • sgf_sv: [integer(1)]

    number of digits to be retained in the solution.

  • sigf: [integer(1)]

    used by ipop. See ipop for more details.

  • maxiter: [integer(1)]

    used by ipop. See ipop for more details.

  • margin: [numeric(1)]

    used by ipop. See ipop for more details.

  • bound: [numeric(1)]

    used by ipop. See ipop for more details.

  • eig.tol: [numeric(1)]

    used by nearPD for adjusting positive definiteness. See nearPD for detail.

  • conv.tol: [numeric(1)]

    used by nearPD for adjusting positive definiteness. See nearPD for detail.

  • posd.tol: [numeric(1)]

    used by nearPD for adjusting positive definiteness. See nearPD for detail.

Returns

[RegFitObj(1)] object of class RegFitObj containing elements:

Betasolution of the quadratic optimization problem,
SVsupport vector machines,
Kernelkernel matrix, an object of class Kernel ,
b0estimated offset,
OptMethprogram used to solve the quadratic optimization problem.

Author(s)

Cesaire J. K. Fouodo

  • Maintainer: Cesaire J. K. Fouodo
  • License: GPL
  • Last published: 2025-04-04