survivalsvm (regression approach)
The function regFit
fits a survivalsvm
model based on the regression approach.
regFit( X, Y, delta, meth_par = 1, kernel_type = "lin_kernel", kernel_pars = NA, bin_cat = integer(0), opt_alg = "quadprog", sgf_sv = 5, sigf = 7, maxiter = 20, margin = 0.05, bound = 10, eig.tol = 1e-06, conv.tol = 1e-07, posd.tol = 1e-08 )
X
: [matrix(1)
]
design matrix.
Y
: [vector(1)
]
vector of survival times.
delta
: [vector(1)
]
vector of status: 0 if censored and 1 else.
meth_par
: [numeric(1)
]
parameter of regularization.
kernel_type
: [character(1)
]
type of the kernel.
kernel_pars
: [vector(1)
]
parameter of kernel.
bin_cat
: [vector(1)
]
indexes of binary/categorial variables.
opt_alg
: [character(1)
]
program used to solve the optimization problem. This most be one of the two possibilities quadprog
or ipop
.
sgf_sv
: [integer(1)
]
number of digits to be retained in the solution.
sigf
: [integer(1)
]
used by ipop
. See ipop
for more details.
maxiter
: [integer(1)
]
used by ipop
. See ipop
for more details.
margin
: [numeric(1)
]
used by ipop
. See ipop
for more details.
bound
: [numeric(1)
]
used by ipop
. See ipop
for more details.
eig.tol
: [numeric(1)
]
used by nearPD
for adjusting positive definiteness. See nearPD
for detail.
conv.tol
: [numeric(1)
]
used by nearPD
for adjusting positive definiteness. See nearPD
for detail.
posd.tol
: [numeric(1)
]
used by nearPD
for adjusting positive definiteness. See nearPD
for detail.
[RegFitObj(1)
] object of class RegFitObj
containing elements:
Beta | solution of the quadratic optimization problem, |
SV | support vector machines, |
Kernel | kernel matrix, an object of class Kernel , |
b0 | estimated offset, |
OptMeth | program used to solve the quadratic optimization problem. |
Cesaire J. K. Fouodo