Gompertz function

The Gompertz Distribution

The Gompertz Distribution

Probability function, distribution function, quantile function and random generation for the distribution with parameters alpha and gamma.

dgompertz(x, alpha = 1, gamma = 1, log = FALSE, ...) pgompertz(q, alpha = 1, gamma = 1, lower.tail = TRUE, log.p = FALSE, ...) qgompertz(p, alpha = 1, gamma = 1, lower.tail = FALSE, log.p = FALSE, ...) rgompertz(n, alpha = 1, gamma = 1, ...)

Arguments

  • x: vector of (non-negative integer) quantiles.
  • alpha: shape parameter of the distribution (alpha > 0).
  • gamma: scale parameter of the distribution (gamma > 0).
  • log, log.p: logical; if TRUE, probabilities p are given as log(p).
  • ...: further arguments passed to other methods.
  • q: vector of quantiles.
  • lower.tail: logical; if TRUE (default), probabilities are P[Xx]P[X \le x]; otherwise, P[X>x]P[X > x].
  • p: vector of probabilities.
  • n: number of random values to return.

Returns

dgompertz gives the (log) probability function, pgompertz gives the (log) distribution function, qgompertz gives the quantile function, and rgompertz generates random deviates.

Details

Probability density function:

f(xα,γ)=αγexp{γxα(eγx1)}I[0,)(x), f(x|\alpha, \gamma) = \alpha\gamma \exp\{\gamma x - \alpha(e^{\gamma x} - 1)\}I_{[0, \infty)}(x),

for α>0\alpha>0 and γ>0\gamma>0.

Distribution function:

F(xα,γ)=1exp{α(eγx1)}, F(x|\alpha, \gamma) = 1 - \exp\{- \alpha(e^{\gamma x} - 1)\},

for x>0x>0, α>0\alpha>0 and γ>0\gamma>0.