epspath function

Fit the entire epsilon path for Support Vector Regression

Fit the entire epsilon path for Support Vector Regression

The Suport Vector Regression (SVR) employs epsilon-intensive loss which ignores errors smaller than epsilon. This algorithm computes the entire paths for SVR solution as a function of epsilon at a given regularization parameter lambda, which we call epsilon path.

epspath(x, y, lambda = 1, kernel.function = radial.kernel, param.kernel = 1, ridge = 1e-08, eps = 1e-07, eps.min = 1e-08, ...)

Arguments

  • x: The data matrix (n x p) with n rows (observations) on p variables (columns)
  • y: The real number valued response variable
  • lambda: The regularization parameter value.
  • kernel.function: User defined kernel function. See svmpath.
  • param.kernel: Parameter(s) of the kernels. See svmpath.
  • ridge: Sometimes the algorithm encounters singularities; in this case a small value of ridge can help, default is ridge = 1e-8
  • eps: A small machine number which is used to identify minimal step sizes
  • eps.min: The smallest value of epsilon for termination of the algorithm. Default is eps.min = 1e-8
  • ...: Generic compatibility

Returns

An 'epspath' object is returned.

Examples

set.seed(1) n <- 30 p <- 50 x <- matrix(rnorm(n*p), n, p) e <- rnorm(n, 0, 1) beta <- c(1, 1, rep(0, p-2)) y <- x %*% beta + e lambda <- 1 eobj <- epspath(x, y, lambda = lambda)

See Also

predict.epspath, plot.epspath, svrpath

Author(s)

Do Hyun Kim, Seung Jun Shin

  • Maintainer: Do Hyun Kim
  • License: GPL (>= 2)
  • Last published: 2018-06-29

Useful links