synchrony-package

Methods for Computing Spatial, Temporal, and Spatiotemporal Statistics

Methods for Computing Spatial, Temporal, and Spatiotemporal Statistics

Methods for computing spatial, temporal, and spatiotemporal statistics as described in Gouhier and Guichard (2014) doi:10.1111/2041-210X.12188. These methods include empirical univariate, bivariate and multivariate variograms; fitting variogram models; phase locking and synchrony analysis; generating autocorrelated and cross-correlated matrices. package

Details

Package:synchrony
Type:Package
Version:0.3.8
Date:2019-12-05
License:GPL (>=2)
URL:https://github.com/tgouhier/synchrony
LazyLoad:yes

Author(s)

Tarik C. Gouhier (tarik.gouhier@gmail.com)

Maintainer: Tarik C. Gouhier (tarik.gouhier@gmail.com)

References

Bjornstad, O. N., and W. Falck. 2001. Nonparametric spatial covariance functions: Estimation and testing. Environmental and Ecological Statistics 8:53-70.

Bjornstad, O. N., R. A. Ims, and X. Lambin. 1999. Spatial population dynamics: analyzing patterns and processes of population synchrony. Trends in Ecology & Evolution 14:427-432.

Buonaccorsi, J. P., J. S. Elkinton, S. R. Evans, and A. M. Liebhold. 2001. Measuring and testing for spatial synchrony. Ecology 82:1668-1679.

Cazelles, B., and L. Stone. 2003. Detection of imperfect population synchrony in an uncertain world. Journal of Animal Ecology 72:953-968.

Fortin, M. J., and M. R. T. Dale. 2005. Spatial Analysis: A Guide for Ecologists. Cambridge University Press.

Gouhier, T. C., and F. Guichard. 2007. Local disturbance cycles and the maintenance of spatial heterogeneity across scales in marine metapopulations. Ecology 88:647-657.

Gouhier, T. C., F. Guichard, and A. Gonzalez. 2010. Synchrony and stability of food webs in metacommunities. The American Naturalist 175:E16-E34.

Gouhier, T. C., F. Guichard, and B. A. Menge. 2010. Ecological processes can synchronize marine population dynamics over continental scales. Proceedings of the National Academy of Sciences 107:8281-8286.

Loreau, M., and C. de Mazancourt. 2008. Species synchrony and its drivers: Neutral and nonneutral community dynamics in fluctuating environments. The American Naturalist 172:E48-E66.

Purves, D. W., and R. Law. 2002. Fine-scale spatial structure in a grassland community: quantifying the plant's eye view. Journal of Ecology 90:121-129.

Vasseur, D. A. 2007. Environmental colour intensifies the Moran effect when population dynamics are spatially heterogeneous. Oikos 116:1726-1736.

Zar, J. H. 1999. Biostatistical Analysis, Fourth edition. Prentice-Hall, Inc., Upper Saddle River, NJ.

Examples

# Compute phase synchrony t1=runif(100) t2=runif(100) sync=phase.sync(t1, t2) # Distribution of phase difference hist(sync$deltaphase$mod_phase_diff_2pi) # Compute concordant peaks p=peaks(t1, t2, nrands=100) # Find proportion of time steps where both time series peak together p$peaks # Plot (null) distribution of proportion of time steps where both time # series peak together hist(p$rand) # p-value of observed value p$pval # Compute Kendall's W data(bird.traits) (w=kendall.w(bird.traits)) # Community matrix for 20 species undergoing random fluctuations comm.rand=matrix(runif(100), nrow=5, ncol=20) community.sync(comm.rand, nrands=10) # Community matrix for 20 species undergoing synchronized fluctuations comm.corr=matrix(rep(comm.rand[,1], 20), nrow=5, ncol=20) community.sync(comm.corr, nrands=10)