Asymptotic variance matrix for the Brown-Resnick process.
Asymptotic variance matrix for the Brown-Resnick process.
Computes the asymptotic variance matrix for the Brown-Resnick process, estimated using the pairwise M-estimator or the weighted least squares estimator.
AsymVarBR(locations, indices, par, method, Tol =1e-05)
Arguments
locations: A d x 2 matrix containing the Cartesian coordinates of d points in the plane.
indices: A q x d matrix containing exactly 2 ones per row, representing a pair of points from the matrix locations, and zeroes elsewhere.
par: The parameters of the Brown-Resnick process. Either (α,ρ) for an isotropic process or (α,ρ,β,c) for an anisotropic process.
method: Choose between "Mestimator" and "WLS".
Tol: For "Mestimator" only. The tolerance in the numerical integration procedure. Defaults to 1e-05.
Returns
A q by q matrix.
Details
The parameters of a The matrix indices can be either user-defined or returned from the function selectGrid with cst = c(0,1). Calculation might be rather slow for method = "Mestimator".
Examples
locations <- cbind(rep(1:2,3), rep(1:3, each =2))indices <- selectGrid(cst = c(0,1), d =6, locations = locations, maxDistance =1)AsymVarBR(locations, indices, par = c(1.5,3), method ="WLS")
References
Einmahl, J.H.J., Kiriliouk, A., Krajina, A., and Segers, J. (2016). An Mestimator of spatial tail dependence. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 78(1), 275-298.
Einmahl, J.H.J., Kiriliouk, A., and Segers, J. (2018). A continuous updating weighted least squares estimator of tail dependence in high dimensions. Extremes 21(2), 205-233.