Asymptotic variance matrix for the max-linear model.
Asymptotic variance matrix for the max-linear model.
Computes the asymptotic variance matrix for the max-linear model, estimated using the weighted least squares estimator.
AsymVarMaxLinear(indices, par, Bmatrix =NULL)
Arguments
indices: A q x d matrix containing at least 2 non-zero elements per row, representing the values in which we will evaluate the stable tail dependence function.
par: The parameter vector.
Bmatrix: A function that converts the parameter vector theta to a parameter matrix B. If NULL, then a simple 2-factor model is assumed.
Returns
A q by q matrix.
Examples
indices <- selectGrid(c(0,0.5,1), d =3, nonzero =3)AsymVarMaxLinear(indices, par = c(0.1,0.55,0.75))
References
Einmahl, J.H.J., Kiriliouk, A., and Segers, J. (2018). A continuous updating weighted least squares estimator of tail dependence in high dimensions. Extremes 21(2), 205-233.