EstimationBR function

Estimation of the parameters of the Brown-Resnick process

Estimation of the parameters of the Brown-Resnick process

Estimation the parameters of the Brown-Resnick process, using either the pairwise M-estimator or weighted least squares (WLS).

EstimationBR( x, locations, indices, k, method, isotropic = FALSE, biascorr = FALSE, Tol = 1e-05, k1 = (nrow(x) - 10), tau = 5, startingValue = NULL, Omega = diag(nrow(indices)), iterate = FALSE, covMat = TRUE )

Arguments

  • x: An nn x dd data matrix.
  • locations: A dd x 2 matrix containing the Cartesian coordinates of dd points in the plane.
  • indices: A qq x dd matrix containing exactly 2 ones per row, representing a pair of points from the matrix locations, and zeroes elsewhere.
  • k: An integer between 1 and n1n - 1; the threshold parameter in the definition of the empirical stable tail dependence function.
  • method: Choose between Mestimator and WLS.
  • isotropic: A Boolean variable. If FALSE (the default), then an anisotropic process is estimated.
  • biascorr: For method = "WLS" only. If TRUE, then the bias-corrected estimator of the stable tail dependence function is used. Defaults to FALSE.
  • Tol: For method = "Mestimator" only. The tolerance parameter used in the numerical integration procedure. Defaults to 1e-05.
  • k1: For biascorr = TRUE only. The value of k1k_1 in the definition of the bias-corrected estimator of the stable tail dependence function.
  • tau: For biascorr = TRUE only. The parameter of the power kernel.
  • startingValue: Initial value of the parameters in the minimization routine. Defaults to c(1,1.5)c(1,1.5) if isotropic = TRUE and c(1,1.5,0.75,0.75)c(1, 1.5, 0.75, 0.75) if isotropic = FALSE.
  • Omega: A qq x qq matrix specifying the metric with which the distance between the parametric and nonparametric estimates will be computed. The default is the identity matrix, i.e., the Euclidean metric.
  • iterate: A Boolean variable. If TRUE, then for method = "Mestimator" the estimator is calculated twice, first with Omega specified by the user, and then a second time with the optimal Omega calculated at the initial estimate. If method = "WLS", then continuous updating is used.
  • covMat: A Boolean variable. If TRUE (the default), the covariance matrix is calculated. Standard errors are obtained by taking the square root of the diagonal elements.

Returns

A list with the following components:

thetaThe estimator using the optimal weight matrix.
theta_pilotThe estimator without the optimal weight matrix.
covMatrixThe estimated covariance matrix for the estimator.
valueThe value of the minimized function at theta .

Details

The parameters of the Brown-Resnick process are either (α,ρ)(\alpha,\rho) for an isotropic process or (α,ρ,β,c)(\alpha,\rho,\beta,c) for an anisotropic process. The matrix indices can be either user-defined or returned from the function selectGrid with cst = c(0,1). Estimation might be rather slow when iterate = TRUE or even when covMat = TRUE.

Examples

## define the locations of 9 stations locations <- cbind(rep(c(1:3), each = 3), rep(1:3, 3)) ## select the pairs of locations indices <- selectGrid(cst = c(0,1), d = 9, locations = locations, maxDistance = 1.5) ## The Brown-Resnick process set.seed(1) x <- SpatialExtremes::rmaxstab(n = 1000, coord = locations, cov.mod = "brown", range = 3, smooth = 1) ## Calculate the estimtors. EstimationBR(x, locations, indices, 100, method = "Mestimator", isotropic = TRUE, covMat = FALSE)$theta EstimationBR(x, locations, indices, 100, method = "WLS", isotropic = TRUE, covMat = FALSE)$theta

References

Einmahl, J.H.J., Kiriliouk, A., and Segers, J. (2018). A continuous updating weighted least squares estimator of tail dependence in high dimensions. Extremes 21(2), 205-233.

Einmahl, J.H.J., Kiriliouk, A., Krajina, A., and Segers, J. (2016). An Mestimator of spatial tail dependence. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 78(1), 275-298.

See Also

selectGrid

  • Maintainer: Anna Kiriliouk
  • License: GPL-3
  • Last published: 2021-06-03

Useful links