EstimationGumbel function

Estimation of the parameter of the Gumbel model

Estimation of the parameter of the Gumbel model

Estimation the parameter of the Gumbel model, using either the pairwise M-estimator or weighted least squares (WLS).

EstimationGumbel( x, indices, k, method, biascorr = FALSE, k1 = (nrow(x) - 10), tau = 5, covMat = TRUE )

Arguments

  • x: An nn x dd data matrix.
  • indices: A qq x dd matrix containing at least 2 non-zero elements per row, representing the values in which we will evaluate the stable tail dependence function. For method = Mestimator, this matrix should contain exactly two ones per row.
  • k: An integer between 1 and n1n - 1; the threshold parameter in the definition of the empirical stable tail dependence function.
  • method: Choose between Mestimator and WLS.
  • biascorr: For method = "WLS" only. If TRUE, then the bias-corrected estimator of the stable tail dependence function is used. Defaults to FALSE.
  • k1: For biascorr = TRUE only. The value of k1k_1 in the definition of the bias-corrected estimator of the stable tail dependence function.
  • tau: For biascorr = TRUE only. The parameter of the power kernel.
  • covMat: A Boolean variable. If TRUE (the default), the covariance matrix is calculated. Standard errors are obtained by taking the square root of the diagonal elements.

Returns

For WLS, a list with the following components:

thetaThe estimator with weight matrix identity.
covMatrixThe estimated covariance matrix for the estimator.
valueThe value of the minimized function at theta .

Details

The matrix indices can be either user defined or returned by selectGrid. For method = "Mestimator", only a grid with exactly two ones per row is accepted, representing the pairs to be used.

Examples

## Generate data with theta = 0.5 set.seed(1) n <- 1000 cop <- copula::gumbelCopula(param = 2, dim = 3) data <- copula::rCopula(n = n,copula = cop) ## Transform data to unit Pareto margins x <- apply(data, 2, function(i) n/(n + 0.5 - rank(i))) ## Define indices in which we evaluate the estimator indices <- selectGrid(c(0,1), d = 3) EstimationGumbel(x, indices, k = 50, method = "WLS", biascorr = TRUE)

References

Einmahl, J.H.J., Kiriliouk, A., and Segers, J. (2018). A continuous updating weighted least squares estimator of tail dependence in high dimensions. Extremes 21(2), 205-233.

Einmahl, J.H.J., Kiriliouk, A., Krajina, A., and Segers, J. (2016). An Mestimator of spatial tail dependence. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 78(1), 275-298.

See Also

selectGrid

  • Maintainer: Anna Kiriliouk
  • License: GPL-3
  • Last published: 2021-06-03

Useful links