Returns the stable tail dependence function in dimension d, evaluated in a point cst.
stdfEmp(ranks, k, cst = rep(1, ncol(ranks)))
Arguments
ranks: A n x d matrix, where each column is a permutation of the integers 1:n, representing the ranks computed from a sample of size n.
k: An integer between 1 and n−1; the threshold parameter in the definition of the empirical stable tail dependence function.
cst: The value in which the tail dependence function is evaluated: defaults to rep(1,d), i.e., the extremal coefficient.
Returns
A scalar between max(x1,…,xd) and x1+⋯+xd.
Examples
## Simulate data from the Gumbel copula and compute the extremal coefficient in dimension four.set.seed(2)cop <- copula::gumbelCopula(param =2, dim =4)data <- copula::rCopula(n =1000, copula = cop)stdfEmp(apply(data,2,rank), k =50)
References
Einmahl, J.H.J., Kiriliouk, A., and Segers, J. (2018). A continuous updating weighted least squares estimator of tail dependence in high dimensions. Extremes 21(2), 205-233.