stdfEmpCorr function

Bias-corrected empirical stable tail dependence function

Bias-corrected empirical stable tail dependence function

Returns the bias-corrected stable tail dependence function in dimension d, evaluated in a point cst.

stdfEmpCorr( ranks, k, cst = rep(1, ncol(ranks)), tau = 5, k1 = (nrow(ranks) - 10) )

Arguments

  • ranks: A n x d matrix, where each column is a permutation of the integers 1:n, representing the ranks computed from a sample of size n.
  • k: An integer between 1 and n1n - 1; the threshold parameter in the definition of the empirical stable tail dependence function.
  • cst: The value in which the tail dependence function is evaluated: defaults to rep(1,d).
  • tau: The parameter of the power kernel. Defaults to 5.
  • k1: An integer between 1 and nn; defaults to nn - 10.

Returns

A scalar between max(x1,,xd)\max(x_1,\ldots,x_d) and x1++xdx_1 + \cdots + x_d.

Details

The values for k1 and tau are chosen as recommended in Beirlant et al. (2016). This function might be slow for large n.

Examples

## Simulate data from the Gumbel copula set.seed(2) cop <- copula::gumbelCopula(param = 2, dim = 4) data <- copula::rCopula(n = 1000, copula = cop) stdfEmpCorr(apply(data,2,rank), k = 50)

References

Einmahl, J.H.J., Kiriliouk, A., and Segers, J. (2018). A continuous updating weighted least squares estimator of tail dependence in high dimensions. Extremes 21(2), 205-233.

Beirlant, J., Escobar-Bach, M., Goegebeur, Y., and Guillou, A. (2016). Bias-corrected estimation of stable tail dependence function. Journal of Multivariate Analysis, 143, 453-466.

See Also

stdfEmp

  • Maintainer: Anna Kiriliouk
  • License: GPL-3
  • Last published: 2021-06-03

Useful links