tarchetypes0.14.0 package

Archetypes for Targets

counter_init

Counter constructor.

counter_set_names

Add data to an existing counter object.

reexports

Objects exported from other packages

tar_age

Create a target that runs when the last run gets old

tar_append_static_values

Append statically mapped values to target output.

tar_assign

An assignment-based pipeline DSL

tar_change

Target that responds to an arbitrary change.

tar_combine

Static aggregation

tar_cue_age

Cue to run a target when the last output reaches a certain age

tar_cue_force

Cue to force a target to run if a condition is true

tar_cue_skip

Cue to skip a target if a condition is true

tar_download_run

Download multiple URLs and return the local paths.

tar_download

Target that downloads URLs.

tar_eval

Evaluate multiple expressions created with symbol substitution.

tar_file_read

Track a file and read the contents.

tar_files_input

Dynamic branching over input files or URLs

tar_files

Dynamic branching over output or input files.

tar_force_change

Convert a condition into a change.

tar_force

Target with a custom condition to force execution.

tar_format_nanoparquet

Nanoparquet format

tar_formats_superseded

Superseded target factories for storage formats

tar_formats

Target factories for storage formats

tar_group_by_run

Generate a grouped data frame within tar_group_by()

tar_group_by

Group a data frame target by one or more variables.

tar_group_count_index

Generate the tar_group column for tar_group_count().

tar_group_count_run

Generate a grouped data frame within tar_group_count().

tar_group_count

Group the rows of a data frame into a given number groups

tar_group_select_run

Generate a grouped data frame within tar_group_select()

tar_group_select

Group a data frame target with tidyselect semantics.

tar_group_size_index

Generate the tar_group column for tar_group_size().

tar_group_size_run

Generate a grouped data frame within tar_group_size()

tar_group_size

Group the rows of a data frame into groups of a given size.

tar_hook_before

Hook to prepend code

tar_hook_inner

Hook to wrap dependencies

tar_hook_outer

Hook to wrap commands

tar_knit_run

Run a knitr report inside a tar_knit() target.

tar_knit

Target with a knitr document.

tar_knitr_deps_expr

Expression with literate programming dependencies.

tar_knitr_deps

List literate programming dependencies.

tar_map_rep

Dynamic batched replication within static branches for data frames.

tar_map

Static branching.

tar_map2_count

Dynamic-within-static branching for data frames (count batching).

tar_map2_group

Append the tar_group variable to a tar_map2() target.

tar_map2_run_rep

Run a rep in a tar_map2()-powered function.

tar_map2_run

Run a dynamic batch of a tar_map2() target.

tar_map2_size

Dynamic-within-static branching for data frames (size batching).

tar_map2

Batched dynamic-within-static branching for data frames.

tar_nanoparquet_convert

Nanoparquet convert method

tar_nanoparquet_read

Nanoparquet read method

tar_nanoparquet_write

Nanoparquet write method

tar_plan

A drake-plan-like pipeline DSL

tar_quarto_files_get_source_files

Get Source Files From Quarto Inspect

tar_quarto_files

Quarto file detection

tar_quarto_rep_rep

Run a rep in a tar_quarto_rep().

tar_quarto_rep_run_params

Prepare Quarto parameters for tar_quarto_rep().

tar_quarto_rep_run

Render a batch of parameterized Quarto reports inside a `tar_quarto_re...

tar_quarto_rep

Parameterized Quarto with dynamic branching.

tar_quarto_run

Render a Quarto project inside a tar_quarto() target.

tar_quarto

Target with a Quarto project.

tar_render_rep_rep

Run a rep in a tar_render_rep().

tar_render_rep_run_params

Prepare R Markdown parameters for tar_render_rep().

tar_render_rep_run

Render a batch of parameterized R Markdown reports inside a `tar_rende...

tar_render_rep

Parameterized R Markdown with dynamic branching.

tar_render_run

Render an R Markdown report inside a tar_render() target.

tar_render

Target with an R Markdown document.

tar_rep_index

Get overall rep index.

tar_rep_map_raw

Dynamic batched computation downstream of tar_rep()(raw; deprecated)...

tar_rep_map

Dynamic batched computation downstream of tar_rep() (deprecated).

tar_rep_run_map_rep

Run a rep in tar_rep().

tar_rep_run

Run a tar_rep() batch.

tar_rep

Batched replication with dynamic branching.

tar_rep2_run_rep

Run a rep in a tar_rep2()-powered function.

tar_rep2_run

Run tar_rep2() batches.

tar_rep2

Dynamic batched computation downstream of tar_rep()

tar_select_names

Select target names from a target list

tar_select_targets

Select target definition objects from a target list

tar_skip

Target with a custom cancellation condition.

tar_sub

Create multiple expressions with symbol substitution.

tar_tangle

Convert Quarto or R Markdown to a pipeline

tarchetypes-package

targets: Archetypes for Targets

walk_ast

Static code analysis for tarchetypes.

walk_call_knitr

Code analysis for knitr reports.

Function-oriented Make-like declarative pipelines for Statistics and data science are supported in the 'targets' R package. As an extension to 'targets', the 'tarchetypes' package provides convenient user-side functions to make 'targets' easier to use. By establishing reusable archetypes for common kinds of targets and pipelines, these functions help express complicated reproducible pipelines concisely and compactly. The methods in this package were influenced by the 'targets' R package. by Will Landau (2018) <doi:10.21105/joss.00550>.

  • Maintainer: William Michael Landau
  • License: MIT + file LICENSE
  • Last published: 2026-02-09 17:20:02 UTC