circle_stats function

Summary Statistics of Circular Data

Summary Statistics of Circular Data

Calculate the (weighted median) and standard deviation of orientation data.

circular_mean(x, w = NULL, axial = TRUE, na.rm = TRUE) circular_var(x, w = NULL, axial = TRUE, na.rm = TRUE) circular_sd(x, w = NULL, axial = TRUE, na.rm = TRUE) circular_median(x, w = NULL, axial = TRUE, na.rm = TRUE) circular_quantiles(x, w = NULL, axial = TRUE, na.rm = TRUE) circular_IQR(x, w = NULL, axial = TRUE, na.rm = TRUE) sample_circular_dispersion(x, w = NULL, axial = TRUE, na.rm = TRUE)

Arguments

  • x: numeric vector. Values in degrees.

  • w: (optional) Weights. A vector of positive numbers and of the same length as x.

  • axial: logical. Whether the data are axial, i.e. pi-periodical (TRUE, the default) or directional, i.e. 2π2 \pi-periodical (FALSE).

  • na.rm: logical value indicating whether NA values in x

    should be stripped before the computation proceeds.

Returns

numeric vector

Note

Weighting may be the reciprocal of the data uncertainties.

Weightings have no effect on quasi-median and quasi-quantiles if length(x) %% 2 != 1 and length(x) %% 4 == 0, respectively.

Examples

set.seed(1) x <- rvm(10, 0, 100) %% 180 unc <- stats::runif(100, 0, 10) circular_mean(x, 1 / unc) circular_var(x, 1 / unc) sample_circular_dispersion(x, 1 / unc) circular_sd(x, 1 / unc) circular_median(x, 1 / unc) circular_quantiles(x, 1 / unc) circular_IQR(x, 1 / unc) data("san_andreas") circular_mean(san_andreas$azi) circular_mean(san_andreas$azi, 1 / san_andreas$unc) circular_median(san_andreas$azi) circular_median(san_andreas$azi, 1 / san_andreas$unc) circular_quantiles(san_andreas$azi) circular_quantiles(san_andreas$azi, 1 / san_andreas$unc) circular_var(san_andreas$azi) circular_var(san_andreas$azi, 1 / san_andreas$unc) sample_circular_dispersion(san_andreas$azi, 1 / san_andreas$unc) data("nuvel1") PoR <- subset(nuvel1, nuvel1$plate.rot == "na") sa.por <- PoR_shmax(san_andreas, PoR, "right") circular_mean(sa.por$azi.PoR, 1 / san_andreas$unc) circular_median(sa.por$azi.PoR, 1 / san_andreas$unc) circular_var(sa.por$azi.PoR, 1 / san_andreas$unc) sample_circular_dispersion(sa.por$azi.PoR, 1 / san_andreas$unc) circular_quantiles(sa.por$azi.PoR, 1 / san_andreas$unc)

References

Mardia, K.V. (1972). Statistics of Directional Data: Probability and Mathematical Statistics. London: Academic Press.

Mardia, K.V., and Jupp, P.E (1999). Directional Statistics, Wiley Series in Probability and Statistics. John Wiley & Sons, Inc., Hoboken, NJ, USA. tools:::Rd_expr_doi("10.1002/9780470316979")

Ziegler, M. O.; Heidbach O. (2019). Manual of the Matlab Script Stress2Grid v1.1. WSM Technical Report 19-02, GFZ German Research Centre for Geosciences. tools:::Rd_expr_doi("10.2312/wsm.2019.002")

Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfess, D., & Mueller, B. (2010). Global crustal stress pattern based on the World Stress Map database release 2008. Tectonophysics 482 , 3<U+2013>15, tools:::Rd_expr_doi("10.1016/j.tecto.2009.07.023")

  • Maintainer: Tobias Stephan
  • License: GPL (>= 3)
  • Last published: 2025-03-01