Confidence Interval around the Mean Direction of Circular Data
Confidence Interval around the Mean Direction of Circular Data
Probabilistic limit on the location of the true or population mean direction, assuming that the estimation errors are normally distributed.
confidence_angle(x, conf.level =0.95, w =NULL, axial =TRUE, na.rm =TRUE)confidence_interval(x, conf.level =0.95, w =NULL, axial =TRUE, na.rm =TRUE)
Arguments
x: numeric vector. Values in degrees.
conf.level: Level of confidence: (1−α%)/100. (0.95 by default).
w: (optional) Weights. A vector of positive numbers and of the same length as x.
axial: logical. Whether the data are axial, i.e. pi-periodical (TRUE, the default) or directional, i.e. 2π-periodical (FALSE).
na.rm: logical value indicating whether NA values in x
should be stripped before the computation proceeds.
Returns
Angle in degrees
Details
The confidence angle gives the interval, i.e. plus and minus the confidence angle, around the mean direction of a particular sample, that contains the true mean direction under a given level of confidence.
Examples
# Example data from Davis (1986), pp. 316finland_stria <- c(23,27,53,58,64,83,85,88,93,99,100,105,113,113,114,117,121,123,125,126,126,126,127,127,128,128,129,132,132,132,134,135,137,144,145,145,146,153,155,155,155,157,163,165,171,172,179,181,186,190,212)confidence_angle(finland_stria, axial =FALSE)confidence_interval(finland_stria, axial =FALSE)data(san_andreas)data("nuvel1")PoR <- subset(nuvel1, nuvel1$plate.rot =="na")sa.por <- PoR_shmax(san_andreas, PoR,"right")confidence_angle(sa.por$azi.PoR, w =1/ san_andreas$unc)confidence_interval(sa.por$azi.PoR, w =1/ san_andreas$unc)
References
Davis (1986) Statistics and data analysis in geology. 2nd ed., John Wiley & Sons.
Jammalamadaka, S. Rao and Sengupta, A. (2001). Topics in Circular Statistics, Sections 3.3.3 and 3.4.1, World Scientific Press, Singapore.