Confidence Interval around the Mean Direction of Circular Data after Fisher (1993)
Confidence Interval around the Mean Direction of Circular Data after Fisher (1993)
For large samples (n >=25) i performs are parametric estimate based on sample_circular_dispersion(). For smaller size samples, it returns a bootstrap estimate.
confidence_interval_fisher( x, conf.level =0.95, w =NULL, axial =TRUE, na.rm =TRUE, boot =FALSE, R =1000L, quiet =FALSE)
Arguments
x: numeric vector. Values in degrees.
conf.level: Level of confidence: (1−α%)/100. (0.95 by default).
w: (optional) Weights. A vector of positive numbers and of the same length as x.
axial: logical. Whether the data are axial, i.e. pi-periodical (TRUE, the default) or directional, i.e. 2π-periodical (FALSE).
na.rm: logical value indicating whether NA values in x
should be stripped before the computation proceeds.
boot: logical. Force bootstrap estimation
R: integer. number of bootstrap replicates
quiet: logical. Prints the used estimation (parametric or bootstrap).
Returns
list
Examples
# Example data from Davis (1986), pp. 316finland_stria <- c(23,27,53,58,64,83,85,88,93,99,100,105,113,113,114,117,121,123,125,126,126,126,127,127,128,128,129,132,132,132,134,135,137,144,145,145,146,153,155,155,155,157,163,165,171,172,179,181,186,190,212)confidence_interval_fisher(finland_stria, axial =FALSE)confidence_interval_fisher(finland_stria, axial =FALSE, boot =TRUE)data(san_andreas)data("nuvel1")PoR <- subset(nuvel1, nuvel1$plate.rot =="na")sa.por <- PoR_shmax(san_andreas, PoR,"right")confidence_interval_fisher(sa.por$azi.PoR, w =1/ san_andreas$unc)confidence_interval_fisher(sa.por$azi.PoR, w =1/ san_andreas$unc, boot =TRUE)
References
N.I. Fisher (1993) Statistical Analysis of Circular Data, Cambridge University Press.