confidence_interval_fisher function

Confidence Interval around the Mean Direction of Circular Data after Fisher (1993)

Confidence Interval around the Mean Direction of Circular Data after Fisher (1993)

For large samples (n >=25) i performs are parametric estimate based on sample_circular_dispersion(). For smaller size samples, it returns a bootstrap estimate.

confidence_interval_fisher( x, conf.level = 0.95, w = NULL, axial = TRUE, na.rm = TRUE, boot = FALSE, R = 1000L, quiet = FALSE )

Arguments

  • x: numeric vector. Values in degrees.

  • conf.level: Level of confidence: (1α%)/100(1 - \alpha \%)/100. (0.95 by default).

  • w: (optional) Weights. A vector of positive numbers and of the same length as x.

  • axial: logical. Whether the data are axial, i.e. pi-periodical (TRUE, the default) or directional, i.e. 2π2 \pi-periodical (FALSE).

  • na.rm: logical value indicating whether NA values in x

    should be stripped before the computation proceeds.

  • boot: logical. Force bootstrap estimation

  • R: integer. number of bootstrap replicates

  • quiet: logical. Prints the used estimation (parametric or bootstrap).

Returns

list

Examples

# Example data from Davis (1986), pp. 316 finland_stria <- c( 23, 27, 53, 58, 64, 83, 85, 88, 93, 99, 100, 105, 113, 113, 114, 117, 121, 123, 125, 126, 126, 126, 127, 127, 128, 128, 129, 132, 132, 132, 134, 135, 137, 144, 145, 145, 146, 153, 155, 155, 155, 157, 163, 165, 171, 172, 179, 181, 186, 190, 212 ) confidence_interval_fisher(finland_stria, axial = FALSE) confidence_interval_fisher(finland_stria, axial = FALSE, boot = TRUE) data(san_andreas) data("nuvel1") PoR <- subset(nuvel1, nuvel1$plate.rot == "na") sa.por <- PoR_shmax(san_andreas, PoR, "right") confidence_interval_fisher(sa.por$azi.PoR, w = 1 / san_andreas$unc) confidence_interval_fisher(sa.por$azi.PoR, w = 1 / san_andreas$unc, boot = TRUE)

References

N.I. Fisher (1993) Statistical Analysis of Circular Data, Cambridge University Press.

  • Maintainer: Tobias Stephan
  • License: GPL (>= 3)
  • Last published: 2025-03-01