distance_binned_stats function

Distance Binned Summary Statistics

Distance Binned Summary Statistics

Circular summary statistics over intervals of distances.

distance_binned_stats( azi, distance, n.breaks = 10, width.breaks = NULL, unc = NULL, prd = NULL, prd.error = NULL, kappa = 2, R = 1000, conf.level = 0.95, ... )

Arguments

  • azi: numeric. Azimuth values in degrees.

  • distance: numeric. the independent variable along the values in azi

    are sorted, e.g. the plate boundary distances

  • n.breaks: numeric. number (greater than or equal to 2) giving the number of equal-sized intervals into which distance is to be cut. Default is 10. Will be ignored if width.breaks is specified.

  • width.breaks: numeric. The width of the intervals into which distance

    is to be cut.

  • unc: (optional) Uncertainties of azi (in degrees) acting as inverse weighting factors for statistics.

  • prd: (optional) numeric. A predicted orientation in degrees.

  • prd.error: (optional) numeric. The uncertainty of the predicted orientation in degrees.

  • kappa: numeric. Concentration parameter applied for the circular mode.

  • R: integer. Number of bootstrap iterates for estimating the error of the dispersion.

  • conf.level: The level of confidence for confidence interval and bootstrapped standard error of dispersion.

  • ...: optional arguments passed to ggplot2::cut_interval() and [ggplot2::cut_width()

Returns

tibble containing the n values for aziin each bin, min/median/max distance of the bin, and the summary statistics for azi. If prd is specified, the normal Chi-squared statistic, dispersion and its standard error are returned as well.

Examples

data("plates") plate_boundary <- subset(plates, plates$pair == "na-pa") data("san_andreas") PoR <- subset(nuvel1, nuvel1$plate.rot == "na") san_andreas$distance <- distance_from_pb( x = san_andreas, PoR = PoR, pb = plate_boundary, tangential = TRUE ) dat <- san_andreas |> cbind(PoR_shmax(san_andreas, PoR, "right")) distance_binned_stats(dat$azi.PoR, distance = dat$distance, width.breaks = 1, unc = dat$unc, prd = 135 ) |> head()

See Also

circular_summary(), circular_dispersion(), and circular_dispersion_boot()

  • Maintainer: Tobias Stephan
  • License: GPL (>= 3)
  • Last published: 2025-03-01