norm_chisq function

Normalized Chi-Squared Test for Circular Data

Normalized Chi-Squared Test for Circular Data

A quantitative comparison between the predicted and observed directions of SHmaxSHmax is obtained by the calculation of the average azimuth and by a normalized chisquaredchi-squared test.

norm_chisq(obs, prd, unc)

Arguments

  • obs: Numeric vector containing the observed azimuth of SHmaxSHmax, same length as prd
  • prd: Numeric vector containing the modeled azimuths of SHmaxSHmax, i.e. the return object from model_shmax()
  • unc: Uncertainty of observed SHmaxSHmax, either a numeric vector or a number

Returns

Numeric vector

Details

The normalized chisquaredchi-squared test is

Normχi2==i=1M(αiαpredictσi)2i=1M(90σi)2(sum(((obsprd)/unc)2)/sum((90/unc)2) {Norm} \chi^2_i == \frac{\sum^M_{i = 1} \left( \frac{\alpha_i - \alpha_{{predict}}}{\sigma_i}\right) ^2}{\sum^M_{i = 1} \left( \frac{90}{\sigma_i} \right) ^2 }(sum( ((obs-prd)/unc)^2 ) / sum( (90/unc)^2 )

The value of the chi-squared test statistic is a number between 0 and 1 indicating the quality of the predicted SHmaxSHmax

directions. Low values (0.15\le 0.15) indicate good agreement, high values (>0.7> 0.7) indicate a systematic misfit between predicted and observed SHmaxSHmax directions.

Examples

data("nuvel1") PoR <- subset(nuvel1, nuvel1$plate.rot == "na") # North America relative to # Pacific plate data(san_andreas) point <- data.frame(lat = 45, lon = 20) prd <- model_shmax(point, PoR) norm_chisq(obs = c(50, 40, 42), prd$sc, unc = c(10, NA, 5)) data(san_andreas) prd2 <- PoR_shmax(san_andreas, PoR, type = "right") norm_chisq(obs = prd2$azi.PoR, 135, unc = san_andreas$unc)

References

Wdowinski, S., 1998, A theory of intraplate tectonics. Journal of Geophysical Research: Solid Earth, 103 , 5037-5059, doi: 10.1029/97JB03390.

  • Maintainer: Tobias Stephan
  • License: GPL (>= 3)
  • Last published: 2025-03-01