plot_density function

Circular Density Plot

Circular Density Plot

Plot the multiples of a von Mises density distribution

plot_density( x, kappa = NULL, axial = TRUE, n = 512, norm.density = FALSE, ..., scale = 1.1, shrink = 1, add = TRUE, main = NULL, labels = TRUE, at = seq(0, 360 - 45, 45), cborder = TRUE, grid = FALSE )

Arguments

  • x: Data to be plotted. A numeric vector containing angles (in degrees).
  • kappa: Concentration parameter for the von Mises distribution. Small kappa gives smooth density lines. Will be estimated using est.kappa() if not provided.
  • axial: Logical. Whether data are uniaxial (axial=FALSE) or biaxial (TRUE, the default).
  • n: the number of equally spaced points at which the density is to be estimated.
  • norm.density: logical. Normalize the density?
  • ...: Further graphical parameters may also be supplied as arguments.
  • scale: radius of plotted circle. Default is 1.1.
  • shrink: parameter that controls the size of the plotted function. Default is 1.
  • add: logical. Add to existing plot? (TRUE by default).
  • main: Character string specifying the title of the plot.
  • labels: Either a logical value indicating whether to plot labels next to the tick marks, or a vector of labels for the tick marks.
  • at: Optional vector of angles at which tick marks should be plotted. Set at=numeric(0) to suppress tick marks.
  • cborder: logical. Border of rose plot.
  • grid: logical. Whether a grid should be added.

Returns

plot or calculated densities as numeric vector

Examples

# Plot the rose histogram first: rose(san_andreas$azi, dots = TRUE, stack = TRUE, dot_cex = 0.5, dot_pch = 21) # Add density curve outside of main plot: plot_density(san_andreas$azi, kappa = 100, col = "#51127CFF", shrink = 1.5, norm.density = FALSE ) # Plot density inside plot only: plot_density(san_andreas$azi, kappa = 100, col = "#51127CFF", add = FALSE, scale = .5, shrink = 2, norm.density = TRUE, grid = TRUE )

See Also

dvm()

  • Maintainer: Tobias Stephan
  • License: GPL (>= 3)
  • Last published: 2025-03-01