watson_test function

Watson's U2U^2 Test of Circular Uniformity

Watson's U2U^2 Test of Circular Uniformity

Watson's test statistic is a rotation-invariant Cramer - von Mises test

watson_test( x, alpha = 0, dist = c("uniform", "vonmises"), axial = TRUE, mu = NULL, quiet = FALSE )

Arguments

  • x: numeric vector. Values in degrees
  • alpha: Significance level of the test. Valid levels are 0.01, 0.05, and 0.1. This argument may be omitted (NULL, the default), in which case, a range for the p-value will be returned.
  • dist: Distribution to test for. The default, "uniform", is the uniform distribution. "vonmises" tests the von Mises distribution.
  • axial: logical. Whether the data are axial, i.e. π\pi-periodical (TRUE, the default) or circular, i.e. 2π2 \pi-periodical (FALSE).
  • mu: (optional) The specified mean direction (in degrees) in alternative hypothesis
  • quiet: logical. Prints the test's decision.

Returns

list containing the test statistic statistic and the significance level p.value.

Details

If statistic > p.value, the null hypothesis is rejected. If not, randomness (uniform distribution) cannot be excluded.

Examples

# Example data from Mardia and Jupp (2001), pp. 93 pidgeon_homing <- c(55, 60, 65, 95, 100, 110, 260, 275, 285, 295) watson_test(pidgeon_homing, alpha = .05) # San Andreas Fault Data: data(san_andreas) data("nuvel1") PoR <- subset(nuvel1, nuvel1$plate.rot == "na") sa.por <- PoR_shmax(san_andreas, PoR, "right") watson_test(sa.por$azi.PoR, alpha = .05) watson_test(sa.por$azi.PoR, alpha = .05, dist = "vonmises")

References

Mardia and Jupp (2000). Directional Statistics. John Wiley and Sons.

  • Maintainer: Tobias Stephan
  • License: GPL (>= 3)
  • Last published: 2025-03-01