Weighted version of the Rayleigh test (or V0-test) for uniformity against a distribution with a priori expected von Mises concentration.
weighted_rayleigh(x, mu =NULL, w =NULL, axial =TRUE, quiet =FALSE)
Arguments
x: numeric vector. Values in degrees
mu: The a priori expected direction (in degrees) for the alternative hypothesis.
w: numeric vector weights of length length(x). If NULL, the non-weighted Rayleigh test is performed.
axial: logical. Whether the data are axial, i.e. π-periodical (TRUE, the default) or directional, i.e. 2π-periodical (FALSE).
quiet: logical. Prints the test's decision.
Returns
a list with the components:
R or C: mean resultant length or the dispersion (if mu is specified). Small values of R (large values of C) will reject uniformity. Negative values of C indicate that vectors point in opposite directions (also lead to rejection).
statistic: Test statistic
p.value: significance level of the test statistic
Details
The Null hypothesis is uniformity (randomness). The alternative is a distribution with a (specified) mean direction (mu). If statistic >= p.value, the null hypothesis of randomness is rejected and angles derive from a distribution with a (or the specified) mean direction.
Examples
# Load datadata("cpm_models")data(san_andreas)PoR <- equivalent_rotation(cpm_models[["NNR-MORVEL56"]],"na","pa")sa.por <- PoR_shmax(san_andreas, PoR,"right")data("iceland")PoR.ice <- equivalent_rotation(cpm_models[["NNR-MORVEL56"]],"eu","na")ice.por <- PoR_shmax(iceland, PoR.ice,"out")data("tibet")PoR.tib <- equivalent_rotation(cpm_models[["NNR-MORVEL56"]],"eu","in")tibet.por <- PoR_shmax(tibet, PoR.tib,"in")# GOF test:weighted_rayleigh(tibet.por$azi.PoR, mu =90, w =1/ tibet$unc)weighted_rayleigh(ice.por$azi.PoR, mu =0, w =1/ iceland$unc)weighted_rayleigh(sa.por$azi.PoR, mu =135, w =1/ san_andreas$unc)