Make a SpatRaster with interpolated values using a fitted model object of classes such as "gstat" (gstat package) or "Krige" (fields package), or any other model that has location (e.g., "x" and "y", or "longitude" and "latitude") as predictors (independent variables). If x and y are the only predictors, it is most efficient if you provide an empty (no associated data in memory or on file) SpatRaster for which you want predictions. If there are more spatial predictor variables, provide these as a SpatRaster in the first argument of the function. If you do not have x and y locations as implicit predictors in your model you should use predict instead.
methods
## S4 method for signature 'SpatRaster'interpolate(object, model, fun=predict,..., xyNames=c("x","y"), factors=NULL, const=NULL, index =NULL, cores=1, cpkgs=NULL, na.rm=FALSE, filename="", overwrite=FALSE, wopt=list())
Arguments
object: SpatRaster
model: model object
fun: function. Default value is "predict", but can be replaced with e.g. "predict.se" (depending on the class of model), or a custom function (see examples)
...: additional arguments passed to fun
xyNames: character. variable names that the model uses for the spatial coordinates. E.g., c("longitude", "latitude")
factors: list with levels for factor variables. The list elements should be named with names that correspond to names in object such that they can be matched. This argument may be omitted for some models from which the levels can be extracted from the model object
const: data.frame. Can be used to add a constant for which there is no SpatRaster for model predictions. This is particularly useful if the constant is a character-like factor value
index: positive integer or NULL. Allows for selecting of the variable returned if the model returns multiple variables
cores: positive integer. If cores > 1, a 'parallel' package cluster with that many cores is created and used
cpkgs: character. The package(s) that need to be loaded on the nodes to be able to run the model.predict function (see examples in predict)
na.rm: logical. If TRUE, cells with NA values in the predictors are removed from the computation. This option prevents errors with models that cannot handle NA values. In most other cases this will not affect the output. An exception is when predicting with a model that returns predicted values even if some (or all!) variables are NA
filename: character. Output filename
overwrite: logical. If TRUE, filename is overwritten
wopt: list with named options for writing files as in writeRaster
Returns
SpatRaster
See Also
predict, interpIDW, interpNear
Examples
r <- rast(system.file("ex/elev.tif", package="terra"))ra <- aggregate(r,10)xy <- data.frame(xyFromCell(ra,1:ncell(ra)))v <- values(ra)i <-!is.na(v)xy <- xy[i,]v <- v[i]## Not run:library(fields)tps <- Tps(xy, v)p <- rast(r)# use model to predict values at all locationsp <- interpolate(p, tps)p <- mask(p, r)plot(p)### change "fun" from predict to fields::predictSE to get the TPS standard error## need to use "rast(p)" to remove the valuesse <- interpolate(rast(p), tps, fun=predictSE)se <- mask(se, r)plot(se)### another predictor variable, "e"e <-(init(r,"x")* init(r,"y"))/100000000names(e)<-"e"z <- as.matrix(extract(e, xy)[,-1])## add as another independent variablexyz <- cbind(xy, z)tps2 <- Tps(xyz, v)p2 <- interpolate(e, tps2, xyOnly=FALSE)## as a linear covariatetps3 <- Tps(xy, v, Z=z)## Z is a separate argument in Krig.predict, so we need a new function## Internally (in interpolate) a matrix is formed of x, y, and elev (Z)pfun <-function(model, x,...){ predict(model, x[,1:2], Z=x[,3],...)}p3 <- interpolate(e, tps3, fun=pfun)#### gstat exampleslibrary(gstat)library(sp)data(meuse)### inverse distance weighted (IDW)r <- rast(system.file("ex/meuse.tif", package="terra"))mg <- gstat(id ="zinc", formula = zinc~1, locations =~x+y, data=meuse, nmax=7, set=list(idp =.5))z <- interpolate(r, mg, debug.level=0, index=1)z <- mask(z, r)## with a model built with an `sf` object you need to provide custom functionlibrary(sf)sfmeuse <- st_as_sf(meuse, coords = c("x","y"), crs=crs(r))mgsf <- gstat(id ="zinc", formula = zinc~1, data=sfmeuse, nmax=7, set=list(idp =.5))interpolate_gstat <-function(model, x, crs,...){ v <- st_as_sf(x, coords=c("x","y"), crs=crs) p <- predict(model, v,...) as.data.frame(p)[,1:2]}zsf <- interpolate(r, mgsf, debug.level=0, fun=interpolate_gstat, crs=crs(r), index=1)zsf <- mask(zsf, r)### kriging### ordinary krigingv <- variogram(log(zinc)~1,~x+y, data=meuse)mv <- fit.variogram(v, vgm(1,"Sph",300,1))gOK <- gstat(NULL,"log.zinc", log(zinc)~1, meuse, locations=~x+y, model=mv)OK <- interpolate(r, gOK, debug.level=0)## universal krigingvu <- variogram(log(zinc)~elev,~x+y, data=meuse)mu <- fit.variogram(vu, vgm(1,"Sph",300,1))gUK <- gstat(NULL,"log.zinc", log(zinc)~elev, meuse, locations=~x+y, model=mu)names(r)<-"elev"UK <- interpolate(r, gUK, debug.level=0)## co-kriginggCoK <- gstat(NULL,'log.zinc', log(zinc)~1, meuse, locations=~x+y)gCoK <- gstat(gCoK,'elev', elev~1, meuse, locations=~x+y)gCoK <- gstat(gCoK,'cadmium', cadmium~1, meuse, locations=~x+y)gCoK <- gstat(gCoK,'copper', copper~1, meuse, locations=~x+y)coV <- variogram(gCoK)plot(coV, type='b', main='Co-variogram')coV.fit <- fit.lmc(coV, gCoK, vgm(model='Sph', range=1000))coV.fit
plot(coV, coV.fit, main='Fitted Co-variogram')coK <- interpolate(r, coV.fit, debug.level=0)plot(coK)## End(Not run)