regress function

Cell level regression

Cell level regression

Run a regression model for each cell of a SpatRaster. The independent variable can either be defined by a vector, or another SpatRaster to make it spatially variable. methods

## S4 method for signature 'SpatRaster,numeric' regress(y, x, formula=y~x, na.rm=FALSE, cores=1, filename="", overwrite=FALSE, ...) ## S4 method for signature 'SpatRaster,SpatRaster' regress(y, x, formula=y~x, na.rm=FALSE, cores=1, filename="", overwrite=FALSE, ...)

Arguments

  • y: SpatRaster
  • x: SpatRaster or numeric (of the same length as nlyr(x)
  • formula: regression formula in the general form of y ~ x. You can add additional terms such as I(x^2)
  • na.rm: logical. Remove NA values?
  • cores: positive integer. If cores > 1, a 'parallel' package cluster with that many cores is created and used. You can also supply a cluster object.
  • filename: character. Output filename
  • overwrite: logical. If TRUE, filename is overwritten
  • ...: list with named options for writing files as in writeRaster

Returns

SpatRaster

Examples

s <- rast(system.file("ex/logo.tif", package="terra")) x <- regress(s, 1:nlyr(s))
  • Maintainer: Robert J. Hijmans
  • License: GPL (>= 3)
  • Last published: 2025-02-26