Density, cumulative density, quantiles and random number generation for the extended generalized Pareto distribution 3
Density, cumulative density, quantiles and random number generation for the extended generalized Pareto distribution 3
Density, cumulative density, quantiles and random number generation for the EGP3 distribution of Papastathopoulos and Tawn
degp3(x, kappa =1, sigma, xi, u =0, log.d =FALSE)pegp3(q, kappa =1, sigma, xi, u =0, lower.tail =TRUE, log.p =FALSE)qegp3(p, kappa =1, sigma, xi, u =0, lower.tail =TRUE, log.p =FALSE)regp3(n, kappa =1, sigma, xi, u =0)
Arguments
x, q, p: Value, quantile or probability respectively.
kappa: The power parameter (Papastathopoulos and Tawn call it the shape parameter and call what we call the shape parameter the tail index.)
sigma: Scale parameter.
xi: Shape parameter.
u: Threshold
log.d, log.p: Whether or not to work on the log scale.
lower.tail: Whether to return the lower tail.
n: Number of random numbers to simulate.
Examples
x <- regp3(1000, kappa=2, sigma=1, xi=.5) hist(x) x <- regp3(1000, kappa=2, sigma=exp(rnorm(1000,1,.25)), xi=rnorm(1000,.5,.2)) hist(x) plot(pegp3(x, kappa=2, sigma=1, xi=.5))
References
I. Papastathopoulos and J. A. Tawn, Extended generalized Pareto modles for tail estimation, Journal of Statistical Planning and Inference, 143, 131 -- 143, 2013