tfaddons0.10.0 package

Interface to 'TensorFlow SIG Addons'

layer_multi_head_attention

Keras-based multi head attention layer

layer_nas_cell

Neural Architecture Search (NAS) recurrent network cell.

loss_npairs_multilabel

Npairs multilabel loss

loss_pinball

Pinball loss

loss_sequence

Weighted cross-entropy loss for a sequence of logits.

loss_sigmoid_focal_crossentropy

Sigmoid focal crossentropy loss

loss_sparsemax

Sparsemax loss

loss_triplet_hard

Triplet hard loss

loss_triplet_semihard

Triplet semihard loss

activation_gelu

Gelu

activation_hardshrink

Hardshrink

activation_lisht

Lisht

activation_mish

Mish

activation_rrelu

Rrelu

activation_softshrink

Softshrink

activation_sparsemax

Sparsemax

activation_tanhshrink

Tanhshrink

attention_bahdanau

Bahdanau Attention

attention_bahdanau_monotonic

Bahdanau Monotonic Attention

attention_luong

Implements Luong-style (multiplicative) attention scoring.

attention_luong_monotonic

Monotonic attention mechanism with Luong-style energy function.

attention_monotonic

Monotonic attention

attention_wrapper

Attention Wrapper

attention_wrapper_state

Attention Wrapper State

callback_average_model_checkpoint

Average Model Checkpoint

callback_time_stopping

Time Stopping

callback_tqdm_progress_bar

TQDM Progress Bar

crf_binary_score

CRF binary score

crf_decode

CRF decode

crf_decode_backward

CRF decode backward

crf_decode_forward

CRF decode forward

crf_forward

CRF forward

crf_log_likelihood

CRF log likelihood

crf_log_norm

CRF log norm

crf_multitag_sequence_score

CRF multitag sequence score

crf_sequence_score

CRF sequence score

crf_unary_score

CRF unary score

decode_dynamic

Dynamic decode

decoder

An RNN Decoder abstract interface object.

decoder_base

Base Decoder

decoder_basic

Basic Decoder

decoder_basic_output

Basic decoder output

decoder_beam_search

BeamSearch sampling decoder

decoder_beam_search_output

Beam Search Decoder Output

decoder_beam_search_state

Beam Search Decoder State

decoder_final_beam_search_output

Final Beam Search Decoder Output

extend_with_decoupled_weight_decay

Factory function returning an optimizer class with decoupled weight de...

gather_tree

Gather tree

gather_tree_from_array

Gather tree from array

hardmax

Hardmax

img_adjust_hsv_in_yiq

Adjust hsv in yiq

img_angles_to_projective_transforms

Angles to projective transforms

img_blend

Blend

img_compose_transforms

Compose transforms

img_connected_components

Connected components

img_cutout

Cutout

img_dense_image_warp

Dense image warp

img_equalize

Equalize

img_euclidean_dist_transform

Euclidean dist transform

img_flat_transforms_to_matrices

Flat transforms to matrices

img_from_4D

From 4D image

img_get_ndims

Get ndims

img_interpolate_bilinear

Interpolate bilinear

img_interpolate_spline

Interpolate spline

img_matrices_to_flat_transforms

Matrices to flat transforms

img_mean_filter2d

Mean filter2d

img_median_filter2d

Median filter2d

img_random_cutout

Random cutout

img_random_hsv_in_yiq

Random hsv in yiq

img_resampler

Resampler

img_rotate

Rotate

img_sharpness

Sharpness

img_shear_x

Shear x-axis

img_shear_y

Shear y-axis

img_sparse_image_warp

Sparse image warp

img_to_4D

To 4D image

img_transform

Transform

img_translate

Translate

img_translate_xy

Translate xy dims

img_translations_to_projective_transforms

Translations to projective transforms

img_unwrap

Uwrap

img_wrap

Wrap

install_tfaddons

Install TensorFlow SIG Addons

layer_activation_gelu

Gaussian Error Linear Unit

layer_correlation_cost

Correlation Cost Layer.

layer_filter_response_normalization

FilterResponseNormalization

layer_group_normalization

Group normalization layer

layer_instance_normalization

Instance normalization layer

layer_maxout

Maxout layer

layer_norm_lstm_cell

LSTM cell with layer normalization and recurrent dropout.

layer_poincare_normalize

Project into the Poincare ball with norm <= 1.0 - epsilon

layer_sparsemax

Sparsemax activation function

layer_weight_normalization

Weight Normalization layer

lookahead_mechanism

Lookahead mechanism

loss_contrastive

Contrastive loss

loss_giou

Implements the GIoU loss function.

loss_hamming

Hamming loss

loss_lifted_struct

Lifted structured loss

loss_npairs

Npairs loss

metric_cohen_kappa

Computes Kappa score between two raters

metric_fbetascore

FBetaScore

metric_hamming_distance

Hamming distance

metric_mcc

MatthewsCorrelationCoefficient

metric_multilabel_confusion_matrix

MultiLabelConfusionMatrix

metric_rsquare

RSquareThis is also called as coefficient of determination. It tells h...

metrics_f1score

F1Score

optimizer_conditional_gradient

Conditional Gradient

optimizer_decay_adamw

Optimizer that implements the Adam algorithm with weight decay

optimizer_decay_sgdw

Optimizer that implements the Momentum algorithm with weight_decay

optimizer_lamb

Layer-wise Adaptive Moments

optimizer_lazy_adam

Lazy Adam

optimizer_moving_average

Moving Average

optimizer_novograd

NovoGrad

optimizer_radam

Rectified Adam (a.k.a. RAdam)

optimizer_swa

Stochastic Weight Averaging

optimizer_yogi

Yogi

parse_time

Parse time

reexports

Objects exported from other packages

register_all

Register all

register_custom_kernels

Register custom kernels

register_keras_objects

Register keras objects

safe_cumprod

Safe cumprod

sample_bernoulli

Bernoulli sample

sample_categorical

Categorical sample

sampler

Sampler

sampler_custom

Base abstract class that allows the user to customize sampling.

sampler_greedy_embedding

Greedy Embedding Sampler

sampler_inference

Inference Sampler

sampler_sample_embedding

Sample Embedding Sampler

sampler_scheduled_embedding_training

A training sampler that adds scheduled sampling

sampler_scheduled_output_training

Scheduled Output Training Sampler

sampler_training

A Sampler for use during training.

skip_gram_sample

Skip gram sample

skip_gram_sample_with_text_vocab

Skip gram sample with text vocab

tfaddons_version

Version of TensorFlow SIG Addons

tile_batch

Tile batch

viterbi_decode

Viterbi decode

'TensorFlow SIG Addons' <https://www.tensorflow.org/addons> is a repository of community contributions that conform to well-established API patterns, but implement new functionality not available in core 'TensorFlow'. 'TensorFlow' natively supports a large number of operators, layers, metrics, losses, optimizers, and more. However, in a fast moving field like Machine Learning, there are many interesting new developments that cannot be integrated into core 'TensorFlow' (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community).

  • Maintainer: Turgut Abdullayev
  • License: Apache License 2.0
  • Last published: 2020-06-02