tfestimators1.9.2 package

Interface to 'TensorFlow' Estimators

column_categorical_weighted

Construct a Weighted Categorical Column

column_categorical_with_hash_bucket

Represents Sparse Feature where IDs are set by Hashing

column_categorical_with_identity

Construct a Categorical Column that Returns Identity Values

boosted_trees_estimators

Boosted Trees Estimator

classifier_parse_example_spec

Generates Parsing Spec for TensorFlow Example to be Used with Classifi...

column-scope

Establish a Feature Columns Selection Scope

column_base

Base Documentation for Feature Column Constructors

column_bucketized

Construct a Bucketized Column

column_categorical_with_vocabulary_file

Construct a Categorical Column with a Vocabulary File

column_categorical_with_vocabulary_list

Construct a Categorical Column with In-Memory Vocabulary

column_crossed

Construct a Crossed Column

column_embedding

Construct a Dense Column

column_indicator

Represents Multi-Hot Representation of Given Categorical Column

column_numeric

Construct a Real-Valued Column

dnn_estimators

Deep Neural Networks

dnn_linear_combined_estimators

Linear Combined Deep Neural Networks

estimator

Construct a Custom Estimator

estimator_spec

Define an Estimator Specification

estimators

Base Documentation for Canned Estimators

eval_spec

Configuration for the eval component of train_and_evaluate

evaluate.tf_estimator

Evaluate an Estimator

experiment

Construct an Experiment

export_savedmodel.tf_estimator

Save an Estimator

feature_columns

Feature Columns

graph_keys

Standard Names to Use for Graph Collections

hook_checkpoint_saver

Saves Checkpoints Every N Steps or Seconds

hook_global_step_waiter

Delay Execution until Global Step Reaches to wait_until_step.

hook_history_saver

A Custom Run Hook for Saving Metrics History

hook_logging_tensor

Prints Given Tensors Every N Local Steps, Every N Seconds, or at End

hook_nan_tensor

NaN Loss Monitor

hook_progress_bar

A Custom Run Hook to Create and Update Progress Bar During Training or...

hook_step_counter

Steps per Second Monitor

hook_stop_at_step

Monitor to Request Stop at a Specified Step

hook_summary_saver

Saves Summaries Every N Steps

input_fn

Construct an Input Function

input_layer

Construct an Input Layer

keras_model_to_estimator

Keras Estimators

latest_checkpoint

Get the Latest Checkpoint in a Checkpoint Directory

linear_estimators

Construct a Linear Estimator

metric_keys

Canonical Metric Keys

mode_keys

Canonical Mode Keys

model_dir

Model directory

numpy_input_fn

Construct Input Function Containing Python Dictionaries of Numpy Array...

plot.tf_estimator_history

Plot training history

predict.tf_estimator

Generate Predictions with an Estimator

prediction_keys

Canonical Model Prediction Keys

reexports

Objects exported from other packages

regressor_parse_example_spec

Generates Parsing Spec for TensorFlow Example to be Used with Regresso...

run_config

Run Configuration

session_run_args

Create Session Run Arguments

session_run_hook

Create Custom Session Run Hooks

task_type

Task Types

tfestimators

High-level Estimator API in TensorFlow for R

train-evaluate-predict

Base Documentation for train, evaluate, and predict.

train.tf_estimator

Train an Estimator

train_and_evaluate.tf_estimator

Train and evaluate the estimator.

train_spec

Configuration for the train component of train_and_evaluate

variable_names_values

Get variable names and values associated with an estimator

Interface to 'TensorFlow' Estimators <https://www.tensorflow.org/guide/estimator>, a high-level API that provides implementations of many different model types including linear models and deep neural networks.

  • Maintainer: Tomasz Kalinowski
  • License: Apache License 2.0
  • Last published: 2021-08-09