plot_bivariate function

Create correlation plots for a mixture model

Create correlation plots for a mixture model

Creates a faceted plot of two-dimensional correlation plots and unidimensional density plots for an object of class 'tidyProfile'.

plot_bivariate( x, variables = NULL, sd = TRUE, cors = TRUE, rawdata = TRUE, bw = FALSE, alpha_range = c(0, 0.1), return_list = FALSE )

Arguments

  • x: tidyProfile object to plot. A tidyProfile is one element of a tidyLPA analysis.
  • variables: Which variables to plot. If NULL, plots all variables that are present in all models.
  • sd: Logical. Whether to show the estimated standard deviations as lines emanating from the cluster centroid.
  • cors: Logical. Whether to show the estimated correlation (standardized covariance) as ellipses surrounding the cluster centroid.
  • rawdata: Logical. Whether to plot raw data, weighted by posterior class probability.
  • bw: Logical. Whether to make a black and white plot (for print) or a color plot. Defaults to FALSE, because these density plots are hard to read in black and white.
  • alpha_range: Numeric vector (0-1). Sets the transparency of geom_density and geom_point.
  • return_list: Logical. Whether to return a list of ggplot objects, or just the final plot. Defaults to FALSE.

Returns

An object of class 'ggplot'.

Examples

# Example 1 iris_sample <- iris[c(1:10, 51:60, 101:110), ] # to make example run more quickly ## Not run: iris_sample %>% subset(select = c("Sepal.Length", "Sepal.Width")) %>% estimate_profiles(n_profiles = 2, models = 1) %>% plot_bivariate() ## End(Not run) # Example 2 ## Not run: mtcars %>% subset(select = c("wt", "qsec", "drat")) %>% poms() %>% estimate_profiles(3) %>% plot_bivariate() ## End(Not run)

Author(s)

Caspar J. van Lissa

  • Maintainer: Joshua M Rosenberg
  • License: MIT + file LICENSE
  • Last published: 2021-11-17