BMDL function

Bayesian Maximum Descriptive Length

Bayesian Maximum Descriptive Length

Generic function to compute the Bayesian Maximum Descriptive Length for a changepoint detection model.

BMDL(object, ...) ## Default S3 method: BMDL(object, ...) ## S3 method for class 'nhpp' BMDL(object, ...)

Arguments

  • object: any object from which a log-likelihood value, or a contribution to a log-likelihood value, can be extracted.
  • ...: some methods for this generic function require additional arguments.

Returns

A double vector of length 1

Details

Currently, the BMDL function is only defined for the NHPP model (see fit_nhpp()). Given a changepoint set τ\tau, the BMDL is:

BMDL(τ,NHPP(yθ^τ)=PMDL(τ)2lnLNHPP(yθ^τ)2lng(θ^τ) BMDL(\tau, NHPP(y | \hat{\theta}_\tau) =P_{MDL}(\tau) - 2 \ln{ L_{NHPP}(y | \hat{\theta}_\tau) }- 2 \ln{ g(\hat{\theta}_\tau) }

where PMDL(τ)P_{MDL}(\tau) is the MDL() penalty.

Examples

# Compute the BMDL BMDL(fit_nhpp(DataCPSim, tau = NULL)) BMDL(fit_nhpp(DataCPSim, tau = c(365, 830)))

See Also

Other penalty-functions: HQC(), MBIC(), MDL(), SIC()