Targeted Maximum Likelihood Estimation of Parameter of MSM
Targeted Maximum Likelihood Estimation of Parameter of MSM
Targeted maximum likelihood estimation of the parameter of a marginal structural model (MSM) for binary point treatment effects. The tmleMSM function is minimally called with arguments (Y,A,W, MSM), where Y is a continuous or binary outcome variable, A is a binary treatment variable, (A=1 for treatment, A=0 for control), and W is a matrix or dataframe of baseline covariates. MSM is a valid regression formula for regressing Y on any combination of A, V, W, T, where V defines strata and T represents the time at which repeated measures on subjects are made. Missingness in the outcome is accounted for in the estimation procedure if missingness indicator Delta is 0 for some observations. Repeated measures can be identified using the id argument. Observation weigths (sampling weights) may optionally be provided
A: binary treatment indicator, 1 - treatment, 0 - control
W: vector, matrix, or dataframe containing baseline covariates. Factors are not currently allowed.
V: vector, matrix, or dataframe of covariates used to define strata
T: optional time for repeated measures data
Delta: indicator of missing outcome or treatment assignment. 1 - observed, 0 - missing
MSM: MSM of interest, specified as valid right hand side of a regression formula (see examples)
v: optional value defining the strata of interest (V=v) for stratified estimation of MSM parameter
Q: optional n×2 matrix of initial values for Q portion of the likelihood, (E(Y∣A=0,W),E(Y∣A=1,W))
Qform: optional regression formula for estimation of E(Y∣A,W), suitable for call to glm
Qbounds: vector of upper and lower bounds on Y and predicted values for initial Q
Q.SL.library: optional vector of prediction algorithms to use for SuperLearner estimation of initial Q
cvQinit: logical, if TRUE, estimates cross-validated predicted values using discrete super learning, default=TRUE
hAV: optional n×2 matrix used in numerator of weights for updating covariate and the influence curve. If unspecified, defaults to conditional probabilities P(A=1∣V) or P(A=1∣T), for repeated measures data. For unstabilized weights, pass in an n×2 matrix of all 1s
hAVform: optionalregression formula of the form A~V+T, if specified this overrides the call to SuperLearner
g1W: optional vector of conditional treatment assingment probabilities, P(A=1∣W)
gform: optional regression formula of the form A~W, if specified this overrides the call to SuperLearner
pDelta1: optional n×2 matrix of conditional probabilities for missingness mechanism,P(Delta=1∣A=0,V,W,T),P(Delta=1∣A=1,V,W,T).
g.Deltaform: optional regression formula of the form Delta~A+W, if specified this overrides the call to SuperLearner
g.SL.library: optional vector of prediction algorithms to use for SuperLearner estimation of g1W
g.Delta.SL.library: optional vector of prediction algorithms to use for SuperLearner estimation ofpDelta1
ub: upper bound on inverse probability weights. See Details section for more information
family: family specification for working regression models, generally gaussian for continuous outcomes (default), binomial for binary outcomes
fluctuation: logistic (default), or linear
alpha: used to keep predicted initial values bounded away from (0,1) for logistic fluctuation
id: optional subject identifier
V.Q: number of cross-validation folds for Super Learner estimation of Q
V.g: number of cross-validation folds for Super Learner estimation of g
V.Delta: number of cross-validation folds for Super Learner estimation of g_Delta
inference: if TRUE, variance-covariance matrix, standard errors, pvalues, and 95% confidence intervals are calculated. Setting to FALSE saves a little time when bootstrapping.
verbose: status messages printed if set to TRUE (default=FALSE)
Q.discreteSL: If true, use discrete SL to estimate Q, otherwise ensembleSL by default. Ignored when SL is not used.
g.discreteSL: If true, use discrete SL to estimate each component of g, otherwise ensembleSL by default. Ignored when SL is not used.
alpha.sig: significance level for constructing 1-alpha.sig confidence intervals
obsWeights: optional weights for biased sampling and two-stage designs.
Details
ub bounds the IC by bounding the factor h(A,V)/[g(A,V,W)P(Delta=1∣A,V,W)] between 0 and ub, default value based on sample size.
Returns
psi: MSM parameter estimate
sigma: variance covariance matrix
se: standard errors extracted from sigma
pvalue: two-sided p-value
lb: lower bound on 95% confidence interval
ub: upper bound on 95% confidence interval
epsilon: fitted value of epsilon used to target initial Q
psi.Qinit: MSM parameter estimate based on untargeted initial Q
Qstar: targeted estimate of Q, an n×2 matrix with predicted values for Q(0,W), Q(1,W) using the updated fit
Qinit: initial estimate of Q. Qinit$coef are the coefficients for a glm model for Q, if applicable. Qinit$Q is an n×2 matrix, where n is the number of observations. Columns contain predicted values for Q(0,W),Q(1,W) using the initial fit. Qinit$type is method for estimating Q
g: treatment mechanism estimate. A list with three items: g$g1W contains estimates of P(A=1∣W) for each observation, g$coef the coefficients for the model for g when glm used, g$type estimation procedure
g.AV: estimate for h(A,V) or h(A,T). A list with three items: g.AV$g1W an n×2 matrix containing values of P(A=0∣V,T),P(A=1∣V,T) for each observation, g.AV$coef the coefficients for the model for g when glm used, g.AV$type estimation procedure
g_Delta: missingness mechanism estimate. A list with three items: g_Delta$g1W an n×2 matrix containing values of P(Delta=1∣A,V,W,T) for each observation, g_Delta$coef the coefficients for the model for g when glm used, g_Delta$type estimation procedure
References
Gruber, S. and van der Laan, M.J. (2012), tmle: An R Package for Targeted Maximum Likelihood Estimation. Journal of Statistical Software, 51(13), 1-35. https://www.jstatsoft.org/v51/i13/
Rosenblum, M. and van der Laan, M.J. (2010), Targeted Maximum Likelihood Estimation of the Parameter of a Marginal Structural Model. The International Journal of Biostatistics,6(2), 2010.
Gruber, S., Phillips, R.V., Lee, H., van der Laan, M.J. Data-Adaptive Selection of the Propensity Score Truncation Level for Inverse Probability Weighted and Targeted Maximum Likelihood Estimators of Marginal Point Treatment Effects. American Journal of Epidemiology 2022; 191(9), 1640-1651.
library(tmle)# Example 1. Estimating MSM parameter with correctly specified regression formulas# MSM: psi0 + psi1*A + psi2*V + psi3*A*V (saturated)# true parameter value: psi = (0, 1, -2, 0.5) # generate data set.seed(100) n <-1000 W <- matrix(rnorm(n*3), ncol =3) colnames(W)<- c("W1","W2","W3") V <- rbinom(n,1,0.5) A <- rbinom(n,1,0.5) Y <- rbinom(n,1, plogis(A -2*V +0.5*A*V)) result.ex1 <- tmleMSM(Y, A, W, V, MSM ="A*V", Qform ="Y~.", gform ="A~1", hAVform ="A~1", family ="binomial") print(result.ex1)## Not run:# Example 2. Biased sampling from example 1 population# (observations having V = 1 twice as likely to be included in the dataset retain.ex2 <- sample(1:n, size = n/2, p = c(1/3+1/3*V)) wt.ex2 <-1/(1/3+1/3*V) result.ex2 <- tmleMSM(Y[retain.ex2], A[retain.ex2], W[retain.ex2,], V[retain.ex2], MSM ="A*V", Qform ="Y~.", gform ="A~1", hAVform ="A~1", family ="binomial", obsWeight = wt.ex2[retain.ex2]) print(result.ex2)# Example 3. Repeated measures data, two observations per id# (e.g., crossover study design)# MSM: psi0 + psi1*A + psi2*V + psi3*V^2 + psi4*T# true parameter value: psi = (-2, 1, 0, -2, 0 )# generate data in wide format (id, W1, Y(t), W2(t), V(t), A(t)) set.seed(10) n <-250 id <- rep(1:n) W1 <- rbinom(n,1,0.5) W2.1<- rnorm(n) W2.2<- rnorm(n) V.1<- rnorm(n) V.2<- rnorm(n) A.1<- rbinom(n,1, plogis(0.5+0.3* W2.1)) A.2<-1-A.1 Y.1<--2+ A.1-2*V.1^2+ W2.1+ rnorm(n) Y.2<--2+ A.2-2*V.2^2+ W2.2+ rnorm(n) d <- data.frame(id, W1, W2=W2.1, W2.2, V=V.1, V.2, A=A.1, A.2, Y=Y.1, Y.2)# change dataset from wide to long format longd <- reshape(d, varying = cbind(c(3,5,7,9), c(4,6,8,10)), idvar ="id", direction ="long", timevar ="T", new.row.names =NULL, sep ="")# misspecified model for initial Q, partial misspecification for g. # V set to 2 for Q and g to save time, not recommended at this sample size result.ex3 <- tmleMSM(Y = longd$Y, A = longd$A, W = longd[,c("W1","W2")], V = longd$V, T = longd$T, MSM ="A + V + I(V^2) + T", Qform ="Y ~ A + V", gform ="A ~ W2", id = longd$id, V.Q=2, V.g=2) print(result.ex3)# Example 4: Introduce 20# V set to 2 for Q and g to save time, not recommended at this sample size Delta <- rbinom(nrow(longd),1,0.8) result.ex4 <- tmleMSM(Y = longd$Y, A = longd$A, W = longd[,c("W1","W2")], V = longd$V, T=longd$T, Delta = Delta, MSM ="A + V + I(V^2) + T", Qform ="Y ~ A + V", gform ="A ~ W2", g.Deltaform ="Delta ~ 1", id=longd$id, verbose =TRUE, V.Q=2, V.g=2) print(result.ex4)## End(Not run)