Trivariate_LSDsim function

Simulates from the trivariate logarithmic series distribution

Simulates from the trivariate logarithmic series distribution

Trivariate_LSDsim(N, p1, p2, p3)

Arguments

  • N: number of data points to be simulated
  • p1: parameter p1p1 of the trivariate logarithmic series distribution
  • p2: parameter p2p2 of the trivariate logarithmic series distribution
  • p3: parameter p3p3 of the trivariate logarithmic series distribution

Returns

An N×3N \times 3 matrix with NN simulated values from the trivariate logarithmic series distribution

Details

The probability mass function of a random vector X=(X1,X2,X3)X=(X_1,X_2,X_3)' following the trivariate logarithmic series distribution with parameters 0<p1,p2,p3<10<p_1, p_2, p_3<1 with p:=p1+p2+p3<1p:=p_1+p_2+p_3<1 is given by

P(X1=x1,X2=x2,X3=x3)=Γ(x1+x2+x3)x1!x2!x3!p1x1p2x2p3x3(log(1p)), P(X_1=x_1,X_2=x_2,X_3=x_3)=\frac{\Gamma(x_1+x_2+x_3)}{x_1!x_2!x_3!}\frac{p_1^{x_1}p_2^{x_2}p_3^{x_3}}{(-\log(1-p))},

for x1,x2,x3=0,1,2,x_1,x_2,x_3=0,1,2,\dots such that x1+x2+x3>0x_1+x_2+x_3>0.

The simulation proceeds in two steps: First, X1X_1 is simulated from the modified logarithmic distribution with parameters c("tilde\n\\tilde\n", "p1=p1/(1p2p3) p_1=p_1/(1-p_2-p_3)") and δ1=log(1p2p3)/log(1p)\delta_1=\log(1-p_2-p_3)/\log(1-p). Then we simulate (X2,X3)(X_2,X_3)' conditional on X1X_1. We note that (X2,X3)X1=x1(X_2,X_3)'|X_1=x_1 follows the bivariate logarithmic series distribution with parameters (p2,p3)(p_2,p_3) when x1=0x_1=0, and the bivariate negative binomial distribution with parameters (x1,p2,p3)(x_1,p_2,p_3)

when x1>0x_1>0.

  • Maintainer: Almut E. D. Veraart
  • License: GPL-3
  • Last published: 2021-02-22

Useful links