fit_marginalNB function

Fist a negative binomial distribution as marginal law

Fist a negative binomial distribution as marginal law

fit_marginalNB(x, LM, plotdiag = FALSE)

Arguments

  • x: vector of equidistant time series data
  • LM: Lebesgue measure of the estimated trawl
  • plotdiag: binary variable specifying whether or not diagnostic plots should be provided

Returns

m: parameter in the negative binomial marginal distribution

theta: parameter in the negative binomial marginal distribution

a: Here a=θ/(1θ)a=\theta/(1-\theta). This is given for an alternative parametrisation of the negative binomial marginal distribution

Details

The moment estimator for the parameters of the negative binomial distribution are given by

θ^=1\mboxE(X)/\mboxVar(X), \hat \theta = 1-\mbox{E}(X)/\mbox{Var}(X),

and

m^=\mboxE(X)(1θ^)/(\mboxLM^θ^). \hat m = \mbox{E}(X)(1-\hat \theta)/(\widehat{ \mbox{LM}} \hat\theta).
  • Maintainer: Almut E. D. Veraart
  • License: GPL-3
  • Last published: 2021-02-22

Useful links