sim_BivariateTrawl function

Simulates a bivariate trawl process

Simulates a bivariate trawl process

sim_BivariateTrawl( t, Delta = 1, burnin = 10, marginal = base::c("Poi", "NegBin"), dependencetype = base::c("fullydep", "dep"), trawl1 = base::c("Exp", "DExp", "supIG", "LM"), trawl2 = base::c("Exp", "DExp", "supIG", "LM"), v1 = 0, v2 = 0, v12 = 0, kappa1 = 0, kappa2 = 0, kappa12 = 0, a1 = 0, a2 = 0, lambda11 = 0, lambda12 = 0, w1 = 0, delta1 = 0, gamma1 = 0, alpha1 = 0, H1 = 0, lambda21 = 0, lambda22 = 0, w2 = 0, delta2 = 0, gamma2 = 0, alpha2 = 0, H2 = 0 )

Arguments

  • t: parameter which specifying the length of the time interval [0,t][0,t] for which a simulation of the trawl process is required.
  • Delta: parameter Δ\Delta specifying the length of the time step, the default is 1
  • burnin: parameter specifying the length of the burn-in period at the beginning of the simulation
  • marginal: parameter specifying the marginal distribution of the trawl
  • dependencetype: Parameter specifying the type of dependence
  • trawl1: parameter specifying the type of the first trawl function
  • trawl2: parameter specifying the type of the second trawl function
  • v1, v2, v12: parameters of the Poisson distribution
  • kappa1, kappa2, kappa12, a1, a2: parameters of the (possibly bivariate) negative binomial distribution
  • lambda11, lambda12, w1: parameters of the exponential (or double-exponential) trawl function of the first process
  • delta1, gamma1: parameters of the supIG trawl function of the first process
  • alpha1, H1: parameter of the long memory trawl of the first process
  • lambda21, lambda22, w2: parameters of the exponential (or double-exponential) trawl function of the second process
  • delta2, gamma2: parameters of the supIG trawl function of the second process
  • alpha2, H2: parameter of the long memory trawl of the second process

Details

This function simulates a bivariate trawl process with either Poisson or negative binomial marginal law. For the trawl function there are currently four choices: exponential, double-exponential, supIG or long memory. More details on the precise simulation algorithm is available in the vignette.

  • Maintainer: Almut E. D. Veraart
  • License: GPL-3
  • Last published: 2021-02-22

Useful links