acov2ma function

Convert Autocovariances to Coefficients of a Moving Average

Convert Autocovariances to Coefficients of a Moving Average

Convert autocovariances to coefficients of a moving average.

acov2ma.init(x, tol = 0.00001, maxiter = 100) acov2ma(x, tol = 1e-16, maxiter = 100, init = NULL)

Arguments

  • x: a numeric vector containing the autocovariances.
  • tol: numeric, convergence tolerance.
  • maxiter: numeric, maximum number of iterations.
  • init: numeric, vector of initial coefficients.

Details

acov2ma.init is based on procedure (17.35) described in Pollock (1999). acov2ma is the Newton-Raphson procedure (17.39) described in the same reference.

Returns

A list containing the vector of coefficients and the variance of the innovations in the moving average model; convergence code and number of iterations.

References

Pollock, D. S. G. (1999) A Handbook of Time-Series Analysis Signal Processing and Dynamics. Academic Press. Chapter 17. tools:::Rd_expr_doi("10.1016/B978-012560990-6/50002-6")

Examples

set.seed(123) x <- arima.sim(n=200, model=list(ma=c(0.7,-0.3))) #sample autocovariances a <- c(var(x), cov(x[-1], x[-200]), cov(x[-c(1,2)], x[-c(199,200)])) #inferred coefficients and variance acov2ma(a, init=acov2ma.init(a, maxit=10)$macoefs) #compare with maximum-likelihood arima(x, order=c(2,0,0), include.mean=FALSE)
  • Maintainer: Javier López-de-Lacalle
  • License: GPL-2
  • Last published: 2017-01-04