Convert Autocovariances to Coefficients of a Moving Average
Convert Autocovariances to Coefficients of a Moving Average
Convert autocovariances to coefficients of a moving average.
acov2ma.init(x, tol =0.00001, maxiter =100)acov2ma(x, tol =1e-16, maxiter =100, init =NULL)
Arguments
x: a numeric vector containing the autocovariances.
tol: numeric, convergence tolerance.
maxiter: numeric, maximum number of iterations.
init: numeric, vector of initial coefficients.
Details
acov2ma.init is based on procedure (17.35) described in Pollock (1999). acov2ma is the Newton-Raphson procedure (17.39) described in the same reference.
Returns
A list containing the vector of coefficients and the variance of the innovations in the moving average model; convergence code and number of iterations.
References
Pollock, D. S. G. (1999) A Handbook of Time-Series Analysis Signal Processing and Dynamics. Academic Press. Chapter 17. tools:::Rd_expr_doi("10.1016/B978-012560990-6/50002-6")
Examples
set.seed(123)x <- arima.sim(n=200, model=list(ma=c(0.7,-0.3)))#sample autocovariancesa <- c(var(x), cov(x[-1], x[-200]), cov(x[-c(1,2)], x[-c(199,200)]))#inferred coefficients and varianceacov2ma(a, init=acov2ma.init(a, maxit=10)$macoefs)#compare with maximum-likelihoodarima(x, order=c(2,0,0), include.mean=FALSE)