Sample correlation integral (at multiple length scales)
Sample correlation integral (at multiple length scales)
Computes the sample correlation integral over a grid of neps length scales starting from eps.min, and for multiple embedding dimensions
d2(series, m, d, t, eps.min, neps=100)
Arguments
series: time series
m: max embedding dimension
d: time delay
t: Theiler window
eps.min: min length scale
neps: number of length scales to evaluate
Details
Computes the sample correlation integral over neps length scales starting from eps.min, for embedding dimension 1, ,m , considering a t time window (see references). The slope of the linear segment in the log-log plot gives an estimate of the correlation dimension (see the example).
Returns
Matrix. Column 1: length scales. Column i=2, , m+1: sample correlation integral for embedding dimension i-1.
Examples
d2(lorenz.ts, m=6, d=2, t=4, eps.min=2)
References
Hegger, R., Kantz, H., Schreiber, T., Practical implementation of nonlinear time series methods: The TISEAN package; CHAOS 9, 413-435 (1999)