Calculate unconditional mean, variance, first p autocovariances and autocorrelations of the GSMAR process.
Calculate unconditional mean, variance, first p autocovariances and autocorrelations of the GSMAR process.
uncond_moments calculates the unconditional mean, variance, and the first p autocovariances and autocorrelations of the GSMAR process.
uncond_moments(gsmar)
Arguments
gsmar: a class 'gsmar' object, typically generated by fitGSMAR or GSMAR.
Returns
Returns a list containing the unconditional mean, variance, and the first p autocovariances and autocorrelations. Note that the lag-zero autocovariance/correlation is not included in the "first p" but is given in the uncond_variance component separately.
Examples
# GMAR modelparams13 <- c(1.4,0.88,0.26,2.46,0.82,0.74,5.0,0.68,5.2,0.72,0.2)gmar13 <- GSMAR(p=1, M=3, params=params13, model="GMAR")uncond_moments(gmar13)# StMAR modelparams12t <- c(1.38,0.88,0.27,3.8,0.74,3.15,0.8,100,3.6)stmar12t <- GSMAR(p=1, M=2, params=params12t, model="StMAR")uncond_moments(stmar12t)# G-StMAR model (similar to the StMAR model above)params12gs <- c(1.38,0.88,0.27,3.8,0.74,3.15,0.8,3.6)gstmar12 <- GSMAR(p=1, M=c(1,1), params=params12gs, model="G-StMAR")uncond_moments(gstmar12)
References
Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36 (2), 247-266.
Meitz M., Preve D., Saikkonen P. 2023. A mixture autoregressive model based on Student's t-distribution. Communications in Statistics - Theory and Methods, 52 (2), 499-515.
Virolainen S. 2022. A mixture autoregressive model based on Gaussian and Student's t-distributions. Studies in Nonlinear Dynamics & Econometrics, 26 (4) 559-580.
Lütkepohl H. 2005. New Introduction to Multiple Time Series Analysis. Springer.
See Also
Other moment functions: cond_moments(), get_regime_autocovs(), get_regime_means(), get_regime_vars()