Warn about large degrees of freedom parameter values
Warn about large degrees of freedom parameter values
warn_dfs warns if the model contains large degrees of freedom parameter values.
warn_dfs( object, p, M, params, model = c("GMAR","StMAR","G-StMAR"), warn_about = c("derivs","errors"))
Arguments
object: an object to be tested
p: a positive integer specifying the autoregressive order of the model.
M: - For GMAR and StMAR models:: a positive integer specifying the number of mixture components.
For G-StMAR models:: a size (2x1) integer vector specifying the number of GMAR type components M1 in the first element and StMAR type components M2 in the second element. The total number of mixture components is M=M1+M2.
params: a real valued parameter vector specifying the model.
For non-restricted models:: Size (M(p+3)+M−M1−1x1) vector theta =(upsilon_{1} ,...,upsilon_{M} , α1,...,αM−1,nu ) where
* upsilon_{m} $=(\phi_{m,0},$phi_{m} $,$$\sigma_{m}^2)$
* phi_{m} $=(\phi_{m,1},...,\phi_{m,p}), m=1,...,M$
* nu $=(\nu_{M1+1},...,\nu_{M})$
* $M1$ is the number of GMAR type regimes.
In the GMAR model, $M1=M$ and the parameter nu dropped. In the StMAR model, $M1=0$.
If the model imposes linear constraints on the autoregressive parameters: Replace the vectors phi_{m} with the vectors psi_{m} that satisfy phi_{m} $=$C_{m}psi_{m} (see the argument `constraints`).
For restricted models:: Size (3M+M−M1+p−1x1) vector theta =(ϕ1,0,...,ϕM,0,phi ,
$\sigma_{1}^2,...,\sigma_{M}^2,$$\alpha_{1},...,\alpha_{M-1},$nu ), where phi =$(\phi_{1},...,\phi_{p})$
contains the AR coefficients, which are common for all regimes.
If the model imposes linear constraints on the autoregressive parameters: Replace the vector phi with the vector psi that satisfies phi $=$Cpsi (see the argument `constraints`).
Symbol ϕ denotes an AR coefficient, σ2 a variance, α a mixing weight, and ν a degrees of freedom parameter. If parametrization=="mean", just replace each intercept term ϕm,0 with the regimewise mean μm=ϕm,0/(1−∑ϕi,m). In the G-StMAR model, the first M1 components are GMAR type
and the rest M2 components are StMAR type. Note that in the case M=1 , the mixing weight parameters α are dropped, and in the case of StMAR or G-StMAR model, the degrees of freedom parameters ν have to be larger than 2.
model: is "GMAR", "StMAR", or "G-StMAR" model considered? In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type.
warn_about: warn about inaccurate derivatives or standard errors?
Returns
Doesn't return anything but throws a warning if any degrees of freedom parameters have value larger than 100.
Details
Either provide a class 'gsmar' object or specify the model by hand.