predict-ubmsFit-method function

Predict parameter values from a fitted model

Predict parameter values from a fitted model

This method generates predicted parameter values for the original dataset or a new dataset using the posterior distribution. Standard deviation and a customizable uncertainty interval are also calculated.

## S4 method for signature 'ubmsFit' predict( object, submodel, newdata = NULL, transform = TRUE, re.form = NULL, level = 0.95, ... )

Arguments

  • object: A fitted model of class ubmsFit
  • submodel: Submodel to predict from, for example "det"
  • newdata: Optional data frame, SpatRaster, or RasterStack of covariates to generate predictions from. If not provided (the default), predictions are generated from the original data
  • transform: If TRUE, back-transform the predictions to their original scale
  • re.form: If NULL, any estimated group-level parameters ("random effects") are included. If NA, they are ignored
  • level: Probability mass to include in the uncertainty interval
  • ...: Currently ignored

Returns

If newdata was a data frame: A data frame with one row per prediction and four columns: 1) Predicted point estimates (posterior means), 2) Standard deviation of the posterior, 3-4) Lower and upper bounds of the specified uncertainty interval

For parameters with more than one dimension, the rows are in site-major order, or site-year-observation for dynamic models.

If newdata was a SpatRaster/RasterStack, returns a SpatRaster/RasterStack with four layers corresponding to the four columns above with the same projection as the original SpatRaster/RasterStack.

See Also

posterior_linpred, posterior_interval

  • Maintainer: Ken Kellner
  • License: GPL (>= 3)
  • Last published: 2024-10-01