varbvs2.6-10 package

Large-Scale Bayesian Variable Selection Using Variational Methods

Fast algorithms for fitting Bayesian variable selection models and computing Bayes factors, in which the outcome (or response variable) is modeled using a linear regression or a logistic regression. The algorithms are based on the variational approximations described in "Scalable variational inference for Bayesian variable selection in regression, and its accuracy in genetic association studies" (P. Carbonetto & M. Stephens, 2012, <DOI:10.1214/12-BA703>). This software has been applied to large data sets with over a million variables and thousands of samples.

  • Maintainer: Peter Carbonetto
  • License: GPL (>= 3)
  • Last published: 2023-05-31