Ensures that the covariance parameters define a positive definite covariance matrix. It takes the vector (ρ1,σ12,...,ρq,σq2,τ2) and checks if all ρk>0, all σk2>=0, and τ2>0.
check_cov_lower(cv, q)
Arguments
cv: (numeric(2*q+1))
Covariance vector of SVC model.
q: (numeric(1))
Integer indicating the number of SVCs.
Returns
logical(1) with TRUE if all conditions above are fulfilled.
Examples
# first one is true, all other are falsecheck_cov_lower(c(0.1,0,0.2,1,0.2), q =2)check_cov_lower(c(0,0,0.2,1,0.2), q =2)check_cov_lower(c(0.1,0,0.2,1,0), q =2)check_cov_lower(c(0.1,0,0.2,-1,0), q =2)