object. For this, save.fitted has to be TRUE in SVC_mle_control.
## S3 method for class 'SVC_mle'plot(x, which =1:2,...)
Arguments
x: (SVC_mle)
which: (numeric)
A numeric vector and subset of 1:2 indicating which of the 2 plots should be plotted.
...: further arguments
Returns
a maximum 2 plots
Tukey-Anscombe plot, i.e. residuals vs. fitted
QQ-plot
Examples
#' ## ---- toy example ----## sample data# setting seed for reproducibilityset.seed(123)m <-7# number of observationsn <- m*m
# number of SVCp <-3# sample datay <- rnorm(n)X <- matrix(rnorm(n*p), ncol = p)# locations on a regular m-by-m-gridlocs <- expand.grid(seq(0,1, length.out = m), seq(0,1, length.out = m))## preparing for maximum likelihood estimation (MLE)# controls specific to MLEcontrol <- SVC_mle_control(# initial values of optimization init = rep(0.1,2*p+1),# using profile likelihood profileLik =TRUE)# controls specific to optimization procedure, see help(optim)opt.control <- list(# number of iterations (set to one for demonstration sake) maxit =1,# tracing information trace =6)## starting MLEfit <- SVC_mle(y = y, X = X, locs = locs, control = control, optim.control = opt.control)## output: convergence code equal to 1, since maxit was only 1summary(fit)## plot residuals# only QQ-plotplot(fit, which =2)# two plots next to each otheroldpar <- par(mfrow = c(1,2))plot(fit)par(oldpar)