## S3 method for class 'SVC_mle'predict( object, newlocs =NULL, newX =NULL, newW =NULL, newdata =NULL, compute.y.var =FALSE,...)
Arguments
object: (SVC_mle)
Model obtained from SVC_mle function call.
newlocs: (NULL or matrix(n.new, 2))
If NULL, then function uses observed locations of model to estimate SVCs. Otherwise, these are the new locations the SVCs are predicted for.
newX: (NULL or matrix(n.new, q))
If provided (together with newW), the function also returns the predicted response variable.
newW: (NULL or matrix(n.new, p))
If provided (together with newX), the function also returns the predicted response variable.
newdata: (NULL or data.frame(n.new, p))
This argument can be used, when the SVC_mle function has been called with an formula, see examples.
compute.y.var: (logical(1))
If TRUE and the response is being estimated, the predictive variance of each estimate will be computed.
...: further arguments
Returns
The function returns a data frame of n.new rows and with columns
SVC_1, ..., SVC_p: the predicted SVC at locations newlocs.
y.pred, if newX and newW are provided
y.var, if newX and newW are provided and compute.y.var is set to TRUE.
loc_x, loc_y, the locations of the predictions
Examples
## ---- toy example ----## We use the sampled, i.e., one dimensional SVCsstr(SVCdata)# sub-sample data to have feasible run time for exampleset.seed(123)id <- sample(length(SVCdata$locs),50)## SVC_mle call with matrix argumentsfit_mat <- with(SVCdata, SVC_mle( y[id], X[id,], locs[id], control = SVC_mle_control(profileLik =TRUE, cov.name ="mat32")))## SVC_mle call with formuladf <- with(SVCdata, data.frame(y = y[id], X = X[id,-1]))fit_form <- SVC_mle( y ~ X, data = df, locs = SVCdata$locs[id], control = SVC_mle_control(profileLik =TRUE, cov.name ="mat32"))## prediction# predicting SVCspredict(fit_mat, newlocs =1:2)predict(fit_form, newlocs =1:2)# predicting SVCs and response providing new covariatespredict( fit_mat, newX = matrix(c(1,1,3,4), ncol =2), newW = matrix(c(1,1,3,4), ncol =2), newlocs =1:2)predict(fit_form, newdata = data.frame(X =3:4), newlocs =1:2)
References
Dambon, J. A., Sigrist, F., Furrer, R. (2021) Maximum likelihood estimation of spatially varying coefficient models for large data with an application to real estate price prediction, Spatial Statistics tools:::Rd_expr_doi("10.1016/j.spasta.2020.100470")