The h function represents the conditional distribution function of a bivariate copula and it should be defined for every copula used in a pair-copula construction. It is defined as the partial derivative of the distribution function of the copula w.r.t. the second argument h(x,v)=F(x∣v)=∂C(x,v)/∂v.
methods
h(copula, x, v, eps)
Arguments
copula: A bivariate copula object.
x: Numeric vector with values in [0,1].
v: Numeric vector with values in [0,1].
eps: To avoid numerical problems for extreme values, the values of x, v and return values close to 0 and 1 are substituted by eps and 1 - eps, respectively. The default eps value for most of the copulas is .Machine$double.eps^0.5.
Methods
signature(copula = "copula"): Default definition of the h function for a bivariate copula. This method is used if no particular definition is given for a copula. The partial derivative is calculated numerically using the numericDeriv function.
signature(copula = "indepCopula"): The h function of the independence copula.
h(x,v)=x
signature(copula = "normalCopula"): The h function of the normal copula.
h(x,v;ρ)=Φ(1−ρ2Φ−1(x)−ρΦ−1(v))
signature(copula = "tCopula"): The h function of the t copula.
signature(copula = "fgmCopula"): The h function of the Farlie-Gumbel-Morgenstern copula.
h(x,v;θ)=(1+θ(−1+2v)(−1+x))x
signature(copula = "frankCopula"): The h function of the Frank copula.
h(x,v;θ)=1−e−θx1−e−θ+e−θv−1e−θv
signature(copula = "galambosCopula"): The h function of the Galambos copula.
h(x,v;θ)=vC(x,v;θ)1−[1+(−logx−logv)θ]−1−1/θ
References
Aas, K. and Czado, C. and Frigessi, A. and Bakken, H. (2009) Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics 44 , 182--198.
Schirmacher, D. and Schirmacher, E. (2008) Multivariate dependence modeling using pair-copulas. Enterprise Risk Management Symposium, Chicago.