This function is used instead of polar_coords if you have raw RNA-Seq count data. It takes 2 DESeqDataSet objects, extracts statistical results and converts the results to a 'volc3d' object, which can be directly plotted.
object: An object of class 'DESeqDataSet' with the full design formula. The function DESeq needs to have been run.
objectLRT: An object of class 'DESeqDataSet' with the reduced design formula. The function DESeq needs to have been run on this object with argument test="LRT".
contrast: Character value specifying column within the metadata stored in the DESeq2 dataset objects is the outcome variable. This column must contain a factor with 3 levels. If not set, the function will select the last term in the design formula of object as per DESeq2 convention.
data: Optional matrix containing gene expression data. If not supplied, the function will pull the expression data from within the DESeq2 object using the DESeq2 function assay(). NOTE: for consistency with gene expression datasets, genes are in rows.
pcutoff: Cut-off for p-value significance
padj.method: Can be any method available in p.adjust or "qvalue". The option "none" is a pass-through.
filter_pairwise: Logical whether adjusted p-value pairwise statistical tests are only conducted on genes which reach significant adjusted p-value cut-off on the group likelihood ratio test
...: Optional arguments passed to polar_coords
Returns
Calls polar_coords to return an S4 'volc3d' object
Examples
library(DESeq2) counts <- matrix(rnbinom(n=1500, mu=100, size=1/0.5), ncol=15) cond <- factor(rep(1:3, each=5), labels = c('A','B','C'))# object construction dds <- DESeqDataSetFromMatrix(counts, DataFrame(cond),~ cond)# standard analysis dds <- DESeq(dds)# Likelihood ratio test ddsLRT <- DESeq(dds, test="LRT", reduced=~1) polar <- deseq_polar(dds, ddsLRT,"cond") volcano3D(polar) radial_ggplot(polar)
See Also
polar_coords, voom_polar, DESeq in the DESeq2 package