data: A data.frame containing the columns specified by the truth
and estimate arguments.
...: Not currently used.
truth: The column identifier for the true results (that is numeric). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, a numeric vector.
estimate: The column identifier for the predicted results (that is also numeric). As with truth this can be specified different ways but the primary method is to use an unquoted variable name. For _vec() functions, a numeric vector.
bias: A logical; should the biased estimate of variance be used (as is Lin (1989))?
na_rm: A logical value indicating whether NA
values should be stripped before the computation proceeds.
case_weights: The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in data. For _vec() functions, a numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().
Returns
A tibble with columns .metric, .estimator, and .estimate and 1 row of values.
For grouped data frames, the number of rows returned will be the same as the number of groups.
For ccc_vec(), a single numeric value (or NA).
Details
ccc() is a metric of both consistency/correlation and accuracy, while metrics such as rmse() are strictly for accuracy and metrics such as rsq() are strictly for consistency/correlation
Examples
# Supply truth and predictions as bare column namesccc(solubility_test, solubility, prediction)library(dplyr)set.seed(1234)size <-100times <-10# create 10 resamplessolubility_resampled <- bind_rows( replicate( n = times, expr = sample_n(solubility_test, size, replace =TRUE), simplify =FALSE), .id ="resample")# Compute the metric by groupmetric_results <- solubility_resampled %>% group_by(resample)%>% ccc(solubility, prediction)
metric_results
# Resampled mean estimatemetric_results %>% summarise(avg_estimate = mean(.estimate))
References
Lin, L. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45 (1), 255-268.
Nickerson, C. (1997). A note on "A concordance correlation coefficient to evaluate reproducibility". Biometrics, 53(4), 1503-1507.