data: A data.frame containing the columns specified by the truth
and estimate arguments.
...: Not currently used.
truth: The column identifier for the true results (that is numeric). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, a numeric vector.
estimate: The column identifier for the predicted results (that is also numeric). As with truth this can be specified different ways but the primary method is to use an unquoted variable name. For _vec() functions, a numeric vector.
delta: A single numeric value. Defines the boundary where the loss function transitions from quadratic to linear. Defaults to 1.
na_rm: A logical value indicating whether NA
values should be stripped before the computation proceeds.
case_weights: The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in data. For _vec() functions, a numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().
Returns
A tibble with columns .metric, .estimator, and .estimate and 1 row of values.
For grouped data frames, the number of rows returned will be the same as the number of groups.
For huber_loss_pseudo_vec(), a single numeric value (or NA).
Examples
# Supply truth and predictions as bare column nameshuber_loss_pseudo(solubility_test, solubility, prediction)library(dplyr)set.seed(1234)size <-100times <-10# create 10 resamplessolubility_resampled <- bind_rows( replicate( n = times, expr = sample_n(solubility_test, size, replace =TRUE), simplify =FALSE), .id ="resample")# Compute the metric by groupmetric_results <- solubility_resampled %>% group_by(resample)%>% huber_loss_pseudo(solubility, prediction)
metric_results
# Resampled mean estimatemetric_results %>% summarise(avg_estimate = mean(.estimate))
References
Huber, P. (1964). Robust Estimation of a Location Parameter. Annals of Statistics, 53 (1), 73-101.
Hartley, Richard (2004). Multiple View Geometry in Computer Vision. (Second Edition). Page 619.