huber_loss_pseudo function

Psuedo-Huber Loss

Psuedo-Huber Loss

Calculate the Pseudo-Huber Loss, a smooth approximation of huber_loss(). Like huber_loss(), this is less sensitive to outliers than rmse().

huber_loss_pseudo(data, ...) ## S3 method for class 'data.frame' huber_loss_pseudo( data, truth, estimate, delta = 1, na_rm = TRUE, case_weights = NULL, ... ) huber_loss_pseudo_vec( truth, estimate, delta = 1, na_rm = TRUE, case_weights = NULL, ... )

Arguments

  • data: A data.frame containing the columns specified by the truth

    and estimate arguments.

  • ...: Not currently used.

  • truth: The column identifier for the true results (that is numeric). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, a numeric vector.

  • estimate: The column identifier for the predicted results (that is also numeric). As with truth this can be specified different ways but the primary method is to use an unquoted variable name. For _vec() functions, a numeric vector.

  • delta: A single numeric value. Defines the boundary where the loss function transitions from quadratic to linear. Defaults to 1.

  • na_rm: A logical value indicating whether NA

    values should be stripped before the computation proceeds.

  • case_weights: The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in data. For _vec() functions, a numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().

Returns

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For huber_loss_pseudo_vec(), a single numeric value (or NA).

Examples

# Supply truth and predictions as bare column names huber_loss_pseudo(solubility_test, solubility, prediction) library(dplyr) set.seed(1234) size <- 100 times <- 10 # create 10 resamples solubility_resampled <- bind_rows( replicate( n = times, expr = sample_n(solubility_test, size, replace = TRUE), simplify = FALSE ), .id = "resample" ) # Compute the metric by group metric_results <- solubility_resampled %>% group_by(resample) %>% huber_loss_pseudo(solubility, prediction) metric_results # Resampled mean estimate metric_results %>% summarise(avg_estimate = mean(.estimate))

References

Huber, P. (1964). Robust Estimation of a Location Parameter. Annals of Statistics, 53 (1), 73-101.

Hartley, Richard (2004). Multiple View Geometry in Computer Vision. (Second Edition). Page 619.

See Also

Other numeric metrics: ccc(), huber_loss(), iic(), mae(), mape(), mase(), mpe(), msd(), poisson_log_loss(), rmse(), rpd(), rpiq(), rsq(), rsq_trad(), smape()

Other accuracy metrics: ccc(), huber_loss(), iic(), mae(), mape(), mase(), mpe(), msd(), poisson_log_loss(), rmse(), smape()

Author(s)

James Blair