The function converts an object of class zoo to an object of class yuima.PPR.
DataPPR(CountVar, yuimaPPR, samp)
Arguments
CountVar: An object of class zoo that contains counting variables and covariates. index(CountVar) returns the arrival times.
yuimaPPR: An object of class yuima.PPR that contains a mathematical description of the point process regression model assumed to be the generator of the observed data.
samp: An object of class yuima.sampling.
Returns
The function returns an object of class yuima.PPR where the slot model contains the Point process described in yuimaPPR@model, the slot data contains the counting variables and the covariates observed on the grid in samp.
Examples
## Not run:# In this example we generate a dataset contains the Counting Variable N# and the Covariate X.# The covariate X is an OU driven by a Gamma process.# Values of parameters.mu <-2alpha <-4beta <-5# Law definitionmy.rKern <-function(n,t){ res0 <- t(t(rgamma(n,0.1*t))) res1 <- t(t(rep(1,n))) res <- cbind(res0,res1) return(res)}Law.PPRKern <- setLaw(rng = my.rKern)# Point Process definitionmodKern <- setModel(drift = c("0.4*(0.1-X)","0"), diffusion = c("0","0"), jump.coeff = matrix(c("1","0","0","1"),2,2), measure = list(df = Law.PPRKern), measure.type = c("code","code"), solve.variable = c("X","N"), xinit=c("0.25","0"))gFun <-"exp(mu*log(1+X))"#Kernel <-"alpha*exp(-beta*(t-s))"prvKern <- setPPR(yuima = modKern, counting.var="N", gFun=gFun, Kernel = as.matrix(Kernel), lambda.var ="lambda", var.dx ="N", lower.var="0", upper.var ="t")# SimulationTerm<-200seed<-1n<-20000true.parKern <- list(mu=mu, alpha=alpha, beta=beta)set.seed(seed)# set.seed(1)time.simKern <-system.time( simprvKern <- simulate(object = prvKern, true.parameter = true.parKern, sampling = setSampling(Terminal =Term, n=n)))plot(simprvKern,main ="Counting Process with covariates",cex.main=0.9)# Using the function get.counting.data we extract from an object of class# yuima.PPR the counting process N and the covariate X at the arrival times.CountVar <- get.counting.data(simprvKern)plot(CountVar)# We convert the zoo object in the yuima.PPR object.sim2 <- DataPPR(CountVar, yuimaPPR=simprvKern, samp=simprvKern@sampling)## End(Not run)