start: initial values to be passed to the optimizer.
est.method: The method used to estimate the parameters. The default est.method = "qmle" indicates the MLE while the alternative approach is based on the minimization of the empirical and theoretical autocorrelation.
method: The optimization method to be used. See optim.
lower: Lower Bounds.
upper: Upper Bounds.
lags: Number of lags used in the autocorrelation.
display: you can see a progress of the estimation when display=TRUE.
Returns
The output contains the estimated parameters.
References
Mercuri, L., Perchiazzo, A., & Rroji, E. (2022). A Hawkes model with CARMA (p, q) intensity. tools:::Rd_expr_doi("10.48550/arXiv.2208.02659") .
## Not run:## MLE For A CARMA(2,1)-Hawkes ### Inputs:a <- c(3,2)b <- c(1,0.3)mu<-0.30true.par<-c(mu,a,b)# step 1) Model Definition => Constructor 'setCarmaHawkes'p <-2q <-1mod1 <- setCarmaHawkes(p = p,q = q)# step 2) Grid Construction => Constructor 'setSampling'FinalTime <-5000t0 <-0samp <- setSampling(t0, FinalTime, n = FinalTime)# step 3) Simulation => method 'simulate'# We use method 'simulate' to generate our dataset. # For the estimation from real data, # we use the constructors 'setData' and #'setYuima' (input 'model' is an object of # 'yuima.CarmaHawkes-class'). names(true.par)<- c(mod1@info@base.Int, mod1@info@ar.par, mod1@info@ma.par)set.seed(1)system.time(sim1 <- simulate(object = mod1, true.parameter = true.par, sampling = samp))plot(sim1)# step 4) Estimation using the likelihood function.system.time( res <- EstimCarmaHawkes(yuima = sim1, start = true.par))## End(Not run)