...: named argument, data.frame, list, or environment specifying the grid to evaluate the characteristic function. See examples.
ae: an object of class yuima.ae-class.
eps: numeric. The intensity of the perturbation.
order: integer. The expansion order. If NULL (default), it uses the maximum order used in ae.
Returns
Characteristic function evaluated on the given grid.
Examples
## Not run:# modelgbm <- setModel(drift ='mu*x', diffusion ='sigma*x', solve.variable ='x')# settingsxinit <-100par <- list(mu =0.01, sigma =0.2)sampling <- setSampling(Initial =0, Terminal =1, n =1000)# asymptotic expansionapprox <- ae(model = gbm, sampling = sampling, order =4, true.parameter = par, xinit = xinit)# The following are all equivalent methods to specify the grid via ....# Notice that the character 'u1' corresponds to the 'u.var' of the ae object.approx@u.var
# 1) named argument u1 <- seq(0,1, by =0.1)psi <- aeCharacteristic(u1 = u1, ae = approx, order =4)# 2) data framedf <- data.frame(u1 = seq(0,1, by =0.1))psi <- aeCharacteristic(df, ae = approx, order =4)# 3) environmentenv <- new.env()env$u1 <- seq(0,1, by =0.1)psi <- aeCharacteristic(env, ae = approx, order =4)# 4) listlst <- list(u1 = seq(0,1, by =0.1))psi <- aeCharacteristic(lst, ae = approx, order =4)## End(Not run)