estimation_LRM function

Estimation of the t-Levy Regression Model

Estimation of the t-Levy Regression Model

The function estimates a t-Levy Regression Model

estimation_LRM(start, model, data, upper, lower, PT = 500, n_obs1 = NULL)

Arguments

  • start: Initial values to be passed to the optimizer.
  • model: A yuima.LevyRM-class that contains the mathematical representation of the t-Levy Regression Model. Its slot @data can contain either real or simulated data.
  • data: An object of class yuima.data-class contains the observations available at uniformly spaced time. If data=NULL, the default, the function uses the data in the object model.
  • upper: A named list for specifying upper bounds of parameters.
  • lower: A named list for specifying lower bounds of parameters.
  • PT: The number of the data for the estimation of the regressor coefficients and the scale parameter.
  • n_obs1: The number of data used in the estimation of the degree of freedom. As default the number of the whole data is used in this part

Details

A two-step estimation procedure. Regressor coefficients and scale parameters are obtained by maximizing the quasi-likelihood function based on the Cauchy density. The degree of freedom is estimated used the unitary increment of the t-noise.

Returns

Estimated parameters

Author(s)

The YUIMA Project Team

Contacts: Lorenzo Mercuri lorenzo.mercuri@unimi.it

  • Maintainer: Stefano M. Iacus
  • License: GPL-2
  • Last published: 2024-02-29